PLAN DE ACCIÓN DE MANEJO INTEGRAL (PAMIC)

CUENCA DEL RÍO JAMAPA

PAMIC 1ª. Edición, junio 2017
ÍNDICE DE CONTENIDOS

Capítulo 1. Introducción ... 1
 1.1. Presentación .. 3
 1.1.1. ¿Qué es una cuenca hidrográfica? 4
 1.1.2. ¿Qué es el enfoque de cuenca? 5
 1.1.3. ¿Qué es el Manejo Integral de Cuencas? 6
 1.1.4. ¿Qué es un PAMIC y para qué sirve? 7
 1.1.5 ¿A quién va dirigido? ... 7
 1.2. Objetivos ... 8
 1.2.1 General .. 8
 1.2.2 Particulares .. 8
 1.3. Síntesis metodológica .. 8
 1.4. Glosario ... 10

Capítulo 2. Descripción general .. 12
 2.1. Localización ... 14
 2.2. Asignación de municipios .. 16
 2.3. Caracterización biofísica de la cuenca 19
 2.3.1 Relieve y rasgos geomorfológicos 19
 2.3.2 Clima actual y proyecciones de cambio climático 23
 2.3.3 Hidrografía .. 28
 2.3.4 Suelos .. 33
 2.3.5 Vegetación natural actual y sus proyecciones de cambio climático .. 35
 2.3.6. Uso de Suelo .. 42
 2.3.7 Cambio de Uso de Suelo y Cobertura del Suelo 44
 2.4. Caracterización poblacional de la Cuenca 45
 2.4.1 Caracterización de la población 45
 2.4.2 Localidades y dispersión de población rural 49
 2.4.3. Densidad de población .. 54
 2.5. Caracterización económica ... 57
 2.5.1 Superficie ejidal ... 57
 2.5.2 Unidades económicas ... 58
 2.6. Inversiones y subsidios .. 61
 2.7. Vinculación con instrumentos de gestión 64

Capítulo 3. Relación oferta-demanda de servicios ambientales hidrológicos .. 68
 3.1. Zonificación de la demanda de agua superficial en la cuenca .. 69
 3.2. Zonificación de la oferta o provisión de servicios ambientales hidrológicos 76
 a) Zonas potenciales proveedoras de agua superficial 76
 b) Zonas potenciales de susceptibilidad a la erosión del suelo 80
c) Zonas potenciales de provisión de Servicio Ambiental Hidrológico (SAH) ... 84
3.3. Priorización territorial para la focalización de intervención en la cuenca ... 85

Capítulo 4. Acciones para la conservación de SAH ... 92
4.1. Propuestas prioritarias de provisión de SAH ... 95
4.2. Focalizando las acciones principales ... 98
4.3. Caracterización de principales acciones .. 100

REFERENCIAS .. 107
Listado de figuras y tablas

Figura 1.1. Análisis multiescalar aplicado en la elaboración de este Plan.
Figura 1.2. Representación de una cuenca hidrográfica exorreica.
Figura 1.3. Síntesis metodológica para la implementación de un PAMIC.
Figura 2.1. Localización de la Cuenca del Río Jamapa.
Figura 2.2. Municipios asignados a la Cuenca del Río Jamapa.
Figura 2.3. Perfil longitudinal del río principal.
Figura 2.4. Zonificación altitudinal de la cuenca del río Jamapa.
Figura 2.5.Geomorfología simplificada de la cuenca del río Jamapa.
Figura 2.6. Tipos de Climas en la Cuenca del río Jamapa.
Figura 2.7.- Temperatura media actual y con proyecciones de cambio climático de tres modelos de circulación general.
Figura 2.8. Precipitación media anual actual y con proyecciones de cambio climático.
Figura 2.9. Hidrografía en la cuenca del Jamapa.
Figura 2.10. Configuración hidrográfica de la cuenca del río Jamapa.
Figura 2.11. Suelos en la Cuenca del río Jamapa.
Figura 2.12. Vegetación Natural en la cuenca del río Jamapa de acuerdo a la Serie V de la cartografía de Uso de Suelo y Vegetación 2011 escala 1:250,000.
Figura 2.13. Porcentaje de cobertura de vegetación natural por subcuenca en la cuenca del río Jamapa.
Figura 2.15. Uso simplificado del suelo en la cuenca del río Jamapa.
Figura 2.16. Variables consideradas en el Índice de dependencia socio-económica de la población de la cuenca del río Jamapa.
Figura 2.17. Caracterización de la población de la cuenca del río Jamapa a partir del índice de dependencia socioeconómica de su población.
Figura 2.18. Localidades rurales y urbanas en la cuenca del río Jamapa.
Figura 2.19. Índice de Dispersión Rural en la cuenca del río Jamapa.
Figura 2.20. Densidad de población en la cuenca del río Jamapa.
Figura 2.21. Superficie ejidal en la cuenca del río Jamapa.
Figura 2.22. Áreas con instrumentos de gestión disponibles en la cuenca del río Jamapa.

Figura 3.1. Volumenes concesionados por uso en la cuenca del río Jamapa.
Figura 3.2.- Diagrama conceptual para la estimación de la demanda global de agua superficial.
Figura 3.3.- Demanda global de agua superficial en las subcuenca del río Jamapa.
Figura 3.4.- Proporción de volúmenes concesionados en cada subcuenca por tipo de uso de acuerdo al REPDA.
Figura 3.5.- Diagrama conceptual para la estimación de la demanda de agua superficial por uso agropecuario.
Figura 3.6.- Demanda de agua superficial para uso agropecuario.
Figura 3.7.- Diagrama conceptual para la estimación de la demanda de agua superficial por uso público y de servicios.
Figura 3.8.- Demanda de agua superficial para uso público y de servicios.
Figura 3.9.- Demanda de agua superficial para uso no consumtivo.
Figura 3.10.- Zonas potenciales proveedoras de agua superficial a partir del modelo Water Yield de INVEST en la cuenca del Jamapa.
Figura 3.11.- Provisión de agua por subcuenca a partir del modelo Water Yield de INVEST.
Figura 3.12.- Zonas potenciales de susceptibilidad a la erosión a partir del modelo SDR de INVEST.
Figura 3.13.- Servicios de disminución de susceptibilidad a la erosión por subcuenca a partir del modelo SDR de INVEST.
Figura 3.14.- Provisión de servicio ambiental hidrológico en la cuenca del río Jamapa.
Figura 3.15.- Diagrama conceptual para la identificación de sitios prioritarios para la implementación de acciones enfocadas a la conservación.
Figura 3.16.- Sitios prioritarios para la implementación de acciones de conservación en la cuenca del río Jamapa.
Figura 3.17.- Diagrama conceptual para la identificación de sitios prioritarios para la implementación de acciones enfocadas a la restauración.
Figura 3.18.- Sitios prioritarios para la implementación de acciones de restauración y rehabilitación en la cuenca del río Jamapa.
Figura 3.19.- Diagrama conceptual para la identificación de sitios prioritarios para la implementación de acciones para la adecuación de prácticas productivas.
Figura 3.20.- Sitios prioritarios para la adecuación de prácticas productivas en la cuenca del río Jamapa.
Figura 4.1.- Focalización de actividades de conservación, restauración y adecuación de prácticas en la cuenca del río Jamapa.

Tabla 2.1. Cambio de la vegetación natural actual vs tres proyecciones de cambio climático para el horizonte 2075-2099.
Tabla 2.2. Inversiones identificadas por los principales actores del sector ambiental y agropecuario en la cuenca del río Jamapa durante el taller de Junio del 2015.
Tabla 4.1. Principales actividades identificadas con un presupuesto reducido en la parte media-baja de la cuenca del Jamapa.
Tabla 4.2. Principales actividades identificadas con un presupuesto reducido en las 3 mesas de la parte media-alta de la cuenca del Jamapa con su importancia relativa.
Tabla 4.3. Las diez actividades a promover en al cuenca y su priorización territorial.
El propósito de este capítulo es ofrecer al lector y lectora elementos (científicos, técnicos, metodológicos, estructurales y de organización) que le permitan apropiarse de este documento, conocer su utilidad práctica y comprender su importancia como instrumento de gestión del territorio. El lector encontrará respuestas a las siguientes preguntas: ¿Qué es una cuenca?, ¿Qué es el enfoque de cuenca?, ¿Qué es el Manejo Integral de Cuencas?, ¿Qué es y para qué sirve un Plan de Manejo Integral de Cuenca (PAMIC)?, ¿Cuáles son los alcances y limitaciones de un PAMIC?, ¿A quién va dirigido?, ¿Cuáles son los objetivos de un PAMIC y qué metodología utiliza? Adicionalmente, este capítulo agrega un glosario donde son definidos algunos conceptos ambientales que resultan básicos para la comprensión de todo el documento.
1. Presentación

La cuenca del río Jamapa, en la región centro del estado de Veracruz conecta dos áreas naturales protegidas de gran importancia ecológica y humana, el Pico de Orizaba y el Sistema Arrecifal Veracruzano. Esta cuenca abastece de agua a ciudades importantes que están parcialmente en su territorio: Veracruz, Boca del Río, Córdoba, Huatusco y Coscomatepec así como a más de mil localidades rurales. En la cuenca habitan más de medio millón de personas.

Las actividades humanas como la agricultura de temporal (principalmente caña de azúcar, maíz y cafeticultura de sombra en transición a una de sol), la ganadería vacuna extensiva o el desarrollo urbano han transformado fuertemente la cuenca. Actualmente de la vegetación natural sólo queda el 15%, principalmente representada por bosques mesófilos de montaña, bosques de coníferas, selvas altas y selvas bajas. En las partes bajas, dónde existieron importantes manchones de manglar, el desarrollo urbano de la zona metropolitana de veracruz, entre otros, ha acabado con gran parte de este valioso ecosistema fundamental para la resiliencia al cambio climático de las zonas costeras.

La gestión sustentable de las cuencas hidrográficas representa un gran reto territorial para atender problemas hídricos, ecológicos, económicos y sociales. Esto ha impulsado que el Manejo Integral de Cuencas adquiera relevancia en los últimos años en el contexto ambiental mundial, principalmente para enfrentar de manera conjunta el grave deterioro de los recursos naturales, así como los efectos del cambio climático. El Manejo Integral de Cuencas (MIC) representa una vía idónea para el desarrollo sustentable, ya que permite la disminución de la vulnerabilidad ante amenazas para el medio ambiente, la sociedad y sus actividades. Con este propósito, la estrategia adoptada en el Plan de Acción de Manejo Integral de la Cuenca del río Jamapa, consiste en simplificar la formulación del Manejo Integral de la cuenca a partir de la provisión de servicios ambientales hidrológicos, la conservación de los elementos clave del territorio, la funcionalidad territorial y la focalización de acciones, las cuales resultan del análisis geográfico multi-escalar, en particular en la relación entre oferta y demanda de servicios ambientales, así como en el estado del capital natural y el efecto acumulativo en la cuenca.

La funcionalidad de la cuenca se determina en términos de provisión de dos servicios ambientales: agua superficial y retención de sedimentos. Esta estrategia en el ámbito geográfico parte de lo general a lo particular, en forma multiescalar y por etapas (figura 1.1).
Figura 1.1. Análisis multiescalar aplicado en la elaboración de este Plan.

El primer nivel jerárquico espacial es el de toda la cuenca, está orientado a la planeación funcional y tiene como propósito identificar las áreas que resultan prioritarias por los servicios ambientales que brindan y cuyas externalidades impactan más el funcionamiento hidrológico y ecológico de la cuenca, de igual forma en este nivel se realiza el diagnóstico de los principales problemas, sus causas, consecuencias y actores críticos. El segundo nivel jerárquico espacial es la subcuenca, regionaliza el territorio según la priorización de las cuencas por su potencial aporte en la funcionalidad de la cuenca. El tercer nivel jerárquico espacial es la microcuenca, comprende identificar la causa de externalidades y usuarios involucrados, saber si existen intereses locales y contar con la participación activa de la población. En este nivel se realiza el mayor trabajo sobre la implementación de las estrategias de manejo con acciones concretas, lo cual implica también su monitoreo.

Los retos de este Plan son: superar la visión fragmentada o sectorial de intervención en el territorio, trabajar con una misma unidad de gestión (cuenca hídrica), tener una visión a largo plazo (que trascienda proyectos y períodos gubernamentales), alinear los programas de políticas públicas para optimizar inversiones, así como incorporar la información disponible vinculada al cambio climático en la planeación de la Cuenca.

1.1.1. ¿Qué es una cuenca hidrográfica?

Una cuenca hidrográfica es una región geográfica natural delimitada por la altitud del relieve, en particular por las zonas más altas que constituyen montañas, colinas y lomeríos, rasgos que sirven para definir las divisorias de aguas, al interior de esta región natural se desarrolla un sistema fluvial o de drenaje superficial integrado por arroyos o ríos que confluyen y concentran sus aguas en un río principal, este río puede desembocar en un punto de salida común, el cual
puede ser el mar, en el caso de una cuenca exorreica (figura 1.2); o un lago, en el caso de una cuenca endorreica; pero también puede ser en el terreno, ya sea por infiltración o evaporación, en el caso de una cuenca arreica.

![Figura 1.2. Representación de una cuenca hidrográfica exorreica.](image)

Una cuenca hidrográfica se constituye como "unidad físico-biológica y también como unidad socio-política para la planificación y ordenación de los recursos naturales" (FAO, 1992). De acuerdo con la SEMARNAT (2013) "en estos territorios hay una interrelación e interdependencia espacial y temporal entre el medio biofísico (suelo, ecosistemas acuáticos y terrestres, cultivos, agua, biodiversidad, estructura geomorfológica y geológica), los modos de apropiación (tecnología y/o mercados) y las instituciones (organización social, cultura, reglas y/o leyes)".

En México existen 1471 cuencas muy heterogéneas exorreicas, endorreicas y arreicas, (INEGI, INE y CONAGUA, 2007). En particular su superficie resulta crítica porque tiene implicaciones en el tipo de gestión de la cuenca, por ejemplo, mientras que existen 807 cuencas menores a 50 km², por otra parte hay 16 cuencas con tamaños mayores a 20,000 km². Este panorama evidencia "la desigual distribución espacial de las cuencas en el país, lo que repercute en la complejidad que adquiere el manejo de cuencas en México" (Cotler y Caire, 2009).

1.1.2. ¿Qué es el enfoque de cuenca?

El enfoque de cuenca busca demostrar que la restauración y el manejo sustentable del ciclo hidrológico es responsabilidad de todos: desde las zonas de recarga de agua en las tierras altas, pasando por su zona intermedia donde frecuentemente tienen lugar las producciones
agrícolas y ganaderas, hasta las más bajas altitudes donde se encuentra localizada la mayoría de los centros urbanos. Generar conciencia de estas inter-conexiones es un reto fundamental.

La parte sustancial del enfoque de cuenca es dirigir la atención en las personas, las familias y sus comunidades, es un "enfoque antropocéntrico en el cual el manejo de los recursos naturales o el ambiente, tiene que entender a las personas, porque hacemos lo que hacemos, cuáles son nuestras necesidades, qué podemos realizar para mejorar el ambiente o conservar los recursos. Por lo tanto, para lograr esto, hay que capacitarnos: tanto organizaciones como comunidades, familias, hombres, mujeres, jóvenes, niñas y niños. Se trata de fortalecer nuestra capacidad de gestión y sobre todo de crear alternativas que brinden beneficios y bienestar (World Vision, sf).

El enfoque de cuenca es de importancia estratégica ya que representa la institucionalización participativa del manejo de recursos naturales, en particular si se considera que los límites de las cuencas muy rara vez coinciden con las fronteras políticas, y que por otra parte, las fuerzas de la naturaleza ignoran las fronteras políticas. Por ejemplo, las inundaciones, la inestabilidad de laderas, la erosión del suelo y la contaminación del agua, ocurren independientemente de los límites políticos. Por esta razón, el reto es dirigir la atención hacia una integración de estos dos puntos de vista. La planificación con multiplicidad de actores y la incorporación de instituciones de gobierno a partir del manejo de cuencas.

1.1.3. ¿Qué es el Manejo Integral de Cuencas?

El Manejo Integral de Cuencas se define como el “proceso interactivo de decisiones sobre los usos y las modificaciones de los recursos naturales dentro de una cuenca. Este proceso provee la oportunidad de hacer un balance entre los diferentes usos que se le pueden dar a los recursos naturales y los impactos que éstos tienen en el largo plazo para la sustentabilidad de los recursos. Implica la formulación y el desarrollo de actividades que involucran a los recursos naturales y humanos de la cuenca. De ahí que en este proceso se requiera la aplicación de las ciencias sociales y naturales. Asimismo, conlleva la participación de la población en los procesos de planificación, concertación y toma de decisiones. Por lo tanto, el concepto integral implica el desarrollo de capacidades locales que faciliten la participación” (INECC, www.inecc.gob.mx).

El Manejo Integral de Cuencas (MIC) tiene como finalidad orientar y organizar el aprovechamiento de la tierra y los recursos de la cuenca con el fin de proporcionar a la población bienes y servicios deseados, en forma sostenible y sin repercusiones nocivas. El MIC reconoce la interrelación entre el uso de la tierra, el suelo y el agua, y los nexos entre las zonas de río arriba y las de río abajo, así como entre las partes interesadas. Estimula la participación local para coadyuvar en la sustentabilidad de la gestión de los recursos naturales, cuyo éxito se relaciona con el apoyo y la participación de sus usuarios. Además, a través de un sistema de seguimiento participativo se favorece la toma de decisiones adecuadas y oportunas. Para que
la población se apropie de la intervención propuesta por el MIC, se requiere trabajar con las partes interesadas locales en la planificación, formulación, ejecución y seguimiento de tales intervenciones, dando prioridad a las actividades que fortalezcan los medios de vida. Además de la participación de los interesados locales, el MIC requiere de nexos horizontales entre autoridades y organizaciones locales, así como acuerdos mutuos entre la administración local, el gobierno y el sector privado. El MIC es así una actividad planificada que se desarrolla dentro de una cuenca hidrográfica, para ordenar los recursos naturales, buscando su conservación, protección, producción óptima y sostenible, que se traduzca en un incremento del bienestar social y económico de la población que depende de la cuenca sometida a manejo.

El MIC también implica pasar de la participación a la gestión conjunta, lo cual significa una participación pluralista en la gestión de los recursos naturales, basada en el aprendizaje recíproco y la negociación entre intereses y preocupaciones diferentes, tales como los de expertos técnicos y autoridades normativas. De igual forma, resulta de importancia forjar nexos institucionales y es imprescindible proporcionar apoyo técnico de largo plazo una vez que termine la asistencia suministrada por el MIC, en este aspecto una estrategia exitosa es la creación de redes permanentes, para asegurar así el seguimiento de los procesos iniciados por el proyecto y garantizar su sostenibilidad. En el MIC la investigación-acción puede definirse como aquella que se dirige a la adaptación, se realiza en colaboración, y es interactiva, pluralista y participativa. Se concentra en temas que reflejan las prioridades locales, y su objetivo es determinar soluciones específicas para cada lugar. De forma tal que los usuarios participen en las diversas etapas del proceso incluyendo la convalidación de resultados.

1.1.4. ¿Qué es un PAMIC y para qué sirve?

El Plan de Acción de Manejo Integral de Cuenca (PAMIC) es un instrumento de gestión que sirve para implementar acciones en áreas prioritarias de la cuenca. Estas acciones están orientadas a la conservación de los elementos clave del territorio, los cuales intervienen en la provisión de servicios ambientales hidrológicos y contribuyen a mantener su funcionalidad. El PAMIC es así un documento operativo y práctico elaborado para la planeación territorial de la cuenca de intervención, entendida ésta como unidad geográfica natural, en donde el recurso agua constituye el eje articulador para conducir al desarrollo de la cuenca a partir del uso sustentable de sus recursos naturales en el contexto del cambio climático.

1.1.5 ¿A quién va dirigido?

Cada PAMIC va dirigido a los habitantes de la cuenca, tanto a población rural como urbana, a los representantes de las instituciones de los diferentes órdenes de gobierno (Federal, Estatal y Municipal), a los representantes de las organizaciones de la sociedad civil, al sector académico, a los inversionistas privados (comerciantes y empresarios), así como a los productores (agricultores, ganaderos, silvícolas, pescadores y acuicultores). La inclusión de los diferentes usuarios facilita la implementación de un adecuado esquema de manejo para las cuencas de intervención.
1.2. Objetivos

1.2.1 General

Focalizar la intervención en la cuenca a través de acciones orientadas a la conservación de los elementos clave del territorio que intervienen en la provisión de SAH y que contribuyen a mantener la funcionalidad del territorio.

1.2.2 Particulares

- **Describir y caracterizar** la situación actual de la cuenca en términos biofísicos, poblacionales, económicos, financieros y su vinculación con instrumentos de gestión.
- **Priorizar las subcuencas por su oferta-demanda de SAH (Servicios ambientales hidrológicos)**, en el contexto actual pero teniendo en cuenta modelos de cambio climático.
- **Proponer y focalizar las acciones** de intervención que promuevan la conservación, la restauración y el aprovechamiento sustentable de los recursos en las subcuencas de oferta.
- **Plantear una estrategia de seguimiento y monitoreo** para evaluar la respuesta de las acciones implementadas.
- **Vincular a los actores y las inversiones en el territorio** a través de una plataforma que permita visualizar espacialmente los sitios de intervención para promover los servicios ambientales hidrológicos.

1.3. Síntesis metodológica

La metodología para elaborar un PAMIC fue desarrollada por el equipo de trabajo del proyecto C6, esta metodología consiste de cinco etapas (figura 1.3). Dichas etapas se enmarcan dentro del enfoque multiescalar que comprende tres unidades de análisis geográfico (cuenca, subcuenca y microcuenca). De igual forma, las cinco etapas metodológicas se vinculan con las 3 secciones del contenido de este documento (Contexto, Priorización e Implementación).
Las etapas uno y dos se pueden resumir en conjunto ya que están dedicadas al análisis de la Oferta-Demanda de SAH (Servicios ambientales hidrológicos), tanto en la escala geográfica de cuenca como de subcuenca. En el contexto de la cuenca se identifican los actores y sus áreas de intervención (principalmente mediante talleres participativos), también se identifica la problemática socio-ambiental de la cuenca en relación a los SAH, sus causas y efectos; de igual forma se identifican los programas, acciones y fuentes de financiamiento que intervienen en la cuenca. Ambas etapas implican la modelación para ubicar y cuantificar procesos en subcuenas que intervienen en la provisión del suministro de agua superficial y en la disminución de la susceptibilidad a la erosión del suelo. La etapa tres (acumulación de unidades hidrográficas) incorpora la determinación de subcuenas beneficiarias y proveedoras en relación a la configuración hidrográfica priorizando unidades hidrográficas (subcuenas). La etapa cuatro (acciones) estable las propuestas de manejo en áreas críticas, dentro de lo posible en microcuenas. En esta etapa se definen también las políticas de intervención. Implica realizar talleres con actores clave para valorar la pertinencia de las acciones y jerarquizarlas. Finalmente, la etapa cinco (implementación y operación) comprende la evaluación de los costos e inversiones para implementar las acciones propuestas. Implica estimar el impacto positivo en los beneficiarios y la retribución de las acciones, por ejemplo el número de personas, infraestructura y/o ecosistemas que se benefician de cada acción, así como definir una estrategia de monitoreo y seguimiento.

Figura 1.3. Síntesis metodológica para la implementación de un PAMIC.
1.4 Glosario

- **Aprovechamiento sustentable**: La utilización de los recursos naturales en forma que se respete la integridad funcional y las capacidades de carga de los ecosistemas de los que forman parte dichos recursos, por períodos de tiempo indefinidos (LGEEPA, última reforma publicada el 9 de enero de 2015, Art. 3, n. III).

- **Conservación** (*ex aequo*) **Protección**: El conjunto de políticas y medidas para mejorar el ambiente y controlar su deterioro (LGEEPA, última reforma publicada el 9 de enero de 2015, Art. 3, n. XXVII).

- **Regionalización**: Proceso de “análisis científico mediante el cual se logra la caracterización, sistematización y clasificación taxonómica de las unidades regionales. Consiste en determinar el sistema de división territorial de individuos espaciales de cualquier tipo (administrativos, económicos, naturales, etc)” (Mateo, 1984). Delimitación geográfica que se realiza en consideración de elementos comunes, sean económicos, sociales, culturales, geográficos, administrativos y/o políticos. Representa un medio adecuado para la toma de decisiones que promuevan el desarrollo en el proceso de planeación. Implica la división de un territorio en áreas menores con características comunes y representa una herramienta metodológica básica en la planeación ambiental, pues permite el conocimiento de los recursos para su manejo adecuado. La importancia de regionalizaciones de tipo ambiental estriba en que se consideran análisis basados en ecosistemas, cuyo objetivo principal es incluir toda la heterogeneidad ecológica que prevalece dentro de un determinado espacio geográfico para, así, proteger hábitats y áreas con funciones ecológicas vitales para la biodiversidad, las cuales no hubiesen sido consideradas con otro tipo de análisis (CONABIO).

- **Rehabilitación**: “Se refiere a cualquier intento por recuperar elementos de estructura o función de un ecosistema sin necesariamente intentar completar una restauración ecológica a una condición específica previa” (Meffé y Carrol, 1994). A diferencia de la restauración, en este concepto “hay poca o ninguna implicación de perfección. Algo que está rehabilitado no se espera que vuelva a su estado original o a algo más saludable como sucede en el caso de la restauración. Por esta razón, este concepto puede ser utilizado para indicar cualquier acto de mejoramiento de un estado degradado” (Urbanka et al. 1997).

- **Restauración ecológica**: “Búsqueda de la recuperación integral de los ecosistemas degradados en términos de su estructura, composición de especies, funcionalidad y autosuficiencia, semejantes a las presentadas originalmente” (Meffé y Carrol, 1994).

- **Restauración**: Conjunto de actividades tendientes a la recuperación y restablecimiento de las condiciones que propician la evolución y la continuidad de los procesos naturales (LGEEPA, última reforma publicada el 9 de enero de 2015, Art. 3, n. XXXIV).

- **Servicio ambiental**: Fenómeno estrictamente ecológico (estructura, proceso, función) cuyo uso se convierte en servicio si los humanos se benefician de ellos, sin beneficiarios no hay servicio (Fisher et al., 2009., de Groot, 2002). Beneficio ambiental tangible e intangible, generado por los ecosistemas, necesario para la supervivencia del sistema.
natural y biológico en su conjunto, y para que proporcione beneficio al ser humano (LGEEPA, última reforma publicada el 9 de enero de 2015, Art. 3, n. XXXVI).

- Usuarios de zonas de provisión: Objeto en el territorio que se beneficia directamente de la zona de provisión de servicios ambientales.
- Zonas de provisión de SAH: Áreas donde la interacción espacial y temporal de atributos territoriales dan lugar a procesos de los cuales los humanos se benefician.
El objetivo de este capítulo es presentar al lector las características de la cuenca en cuestión, incluye información cartográfica y geográfica, sintetizada en cuadros y figuras de mapas simplificados*. El capítulo incluye la localización geográfica, la superficie total, la delimitación territorial en términos de cómo está conformada administrativamente (estados y municipios), así como la proporción territorial de cada administración. Presenta el criterio utilizado en la asignación municipal, es decir, definir los municipios que conforman la cuenca bajo un contexto administrativo, y que deberían (en consecuencia) estar involucrados en la toma de decisiones en torno a la cuenca. El capítulo describe la caracterización biofísica de la cuenca, lo cual involucra a los elementos de la naturaleza que confluyen dentro de la cuenca, esto incluye a los rasgos del relieve (geomorfología), los tipos de climas (climatología), los ríos y su jerarquía (hidrografía y subcuenca), los principales tipos de suelos (edafología), la vegetación natural, el cambio en la cobertura de vegetación natural para el periodo 2002-2011 y el porcentaje de vegetación natural por subcuenca. Además, el capítulo aborda la caracterización de la población como principal agente de transformación del medio natural, incluye las localidades urbanas y rurales, la dispersión rural y la densidad de población. El capítulo continúa con la caracterización económica, que incorpora la descripción de la superficie ejidal y su distribución, para vincularla con las actividades productivas. Incluye también las unidades económicas por sector, el uso del suelo, el cambio del uso de suelo y el porcentaje de uso de suelo agropecuario por subcuenca. Finalmente, el capítulo aborda el diagnóstico de las inversiones y subsidios en términos ambientales, así como la vinculación con otros instrumentos de gestión.

*Nota del Editor: El término “figuras de mapas simplificados” considera que el diseño fue realizado para impresión en hojas tamaño carta, por lo tanto, únicamente incluyen elementos críticos para su lectura e interpretación. Por lo anterior, estas figuras pueden aparecer rotadas en el documento para aprovechar así la máxima extensión de la hoja de papel.
2.1. Localización

La Cuenca del Río La Jamapa se ubica en la vertiente del Golfo de México, sus coordenadas geográficas extremas y cuencas colindantes se muestran en el cuadro adjunto. En un contexto fisiográfico, la parte este de la Cuenca se ubica en la Llanura Costera del Golfo Sur, mientras que la parte oeste se ubica en el Eje Neovolcánico (Faja Volcánica Mexicana). Esta cuenca ocupa una superficie de 3,918 km² y está conformada por los estados de Veracruz (98 %) y Puebla (2 %), el primero representado por 31 municipios, y el segundo por 3. La mayor elevación registrada es de 5,670 msnm y la menor es de 0, con una elevación promedio de X (falta checar dato) msnm. El cauce principal del río Jamapa se extiende hasta 148.47 km. Las localidades más pobladas en la cuenca son, de acuerdo con el censo de población y vivienda más reciente (INEGI, 2010) son: Córdoba con 140,896 habitantes (si bien sólo alrededor del 40% del territorio de la ciudad se encuentra dentro de la cuenca), Huatusco (31,305 habitantes), Coscomatepec (15,252 habitantes) y Potrero Nuevo. Mpio.Atoyac (14,287 habitantes). Ciudades como Boca del Río y Veracruz cuentan también con una pequeña parte de sus territorio y población (<5%) dentro de los límites de la cuenca. Otras características importantes de la Cuenca se pueden observar en el cuadro adjunto, así como en la figura 2.1.

<table>
<thead>
<tr>
<th>Dirección</th>
<th>Coordenadas extremas</th>
<th>Cuencas Colindantes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grados</td>
<td>Minutos</td>
</tr>
<tr>
<td>Norte</td>
<td>-96</td>
<td>58</td>
</tr>
<tr>
<td>Sur</td>
<td>-96</td>
<td>34</td>
</tr>
<tr>
<td>Este</td>
<td>-95</td>
<td>57</td>
</tr>
<tr>
<td>Oeste</td>
<td>-97</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parámetros generales de la cuenca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área: 3,918 km²</td>
</tr>
<tr>
<td>Longitud río principal: 148 km</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altitud del relieve (msnm):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mínima</td>
</tr>
<tr>
<td>Promedio</td>
</tr>
<tr>
<td>Desnivel altitudinal (m)</td>
</tr>
<tr>
<td>5,670</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1,376</td>
</tr>
<tr>
<td>5,670</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entidades y cantidad de municipios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estado</td>
</tr>
<tr>
<td>Superficie %</td>
</tr>
<tr>
<td>Superficie km²</td>
</tr>
<tr>
<td>Mt Municipios con superficie total incluida</td>
</tr>
<tr>
<td>Mp Municipios con superficie parcial incluida</td>
</tr>
<tr>
<td>Total de municipios (Mt+Mp)¹</td>
</tr>
<tr>
<td>1. Veracruz</td>
</tr>
<tr>
<td>98.2</td>
</tr>
<tr>
<td>3,849</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>2. Puebla</td>
</tr>
<tr>
<td>1.8</td>
</tr>
<tr>
<td>68</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Gran total: 34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Principales ciudades y/o localidades urbanas (2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificador</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

¹ Los nombres de los municipios se muestran en la sección 2.2: Asignación de municipios.
² De esta población total únicamente una parte, alrededor del 40% se encuentra dentro de los límites de la cuenca.
Figura 2.1. Localización de la Cuenca del Río Jamapa. Fuente: Elaboración propia con datos de INEGI.
2.2 Asignación de municipios

La cuenca del río Jamapa está conformada por 34 municipios, ya sea en forma parcial o total. Con el propósito de facilitar la implementación de acciones en la cuenca, así como para facilitar la toma de decisiones en la gestión del territorio se definieron dos criterios para la asignación de municipios: a) contener dentro de la cuenca más del 50% de la superficie municipal y b) contener dentro de la cuenca su cabecera municipal. En algunos casos donde no se cumplían estos dos criterios simultáneamente se consideraron esos municipios como de influencia, caso por ejemplo de Córdoba, cuya cabeceras se encuentran parcialmente en la cuenca del Jamapa y parcialmente en la cuenca del río Papaloapan pero que tiene una relación muy importante con la dinámica de dicha cuenca, entre otras cosas porque de ésta obtiene gran parte de su agua la cabecera. A continuación se muestra la lista que incluye tanto a los 20 municipios que resultaron asignados a la Cuenca para propósitos de gestión, como los otros 14 que no fueron asignados. El mapa correspondiente se muestra en la figura 2.2.

<table>
<thead>
<tr>
<th>Clave Mun</th>
<th>Nombre municipio</th>
<th>Superficie en cuenca (km2)</th>
<th>C*</th>
<th>% municipal en cuenca</th>
<th>% de la cuenca</th>
<th>A*</th>
</tr>
</thead>
<tbody>
<tr>
<td>30008</td>
<td>Alpatláhuac</td>
<td>70,5</td>
<td>si</td>
<td>100</td>
<td>1,8</td>
<td>si</td>
</tr>
<tr>
<td>30029</td>
<td>Calcahualco</td>
<td>133,5</td>
<td>si</td>
<td>100</td>
<td>3,4</td>
<td>si</td>
</tr>
<tr>
<td>30186</td>
<td>Tomatlán</td>
<td>18,7</td>
<td>si</td>
<td>100</td>
<td>0,5</td>
<td>si</td>
</tr>
<tr>
<td>30047</td>
<td>Coscomatepec</td>
<td>130,5</td>
<td>si</td>
<td>83</td>
<td>3,3</td>
<td>si</td>
</tr>
<tr>
<td>30080</td>
<td>Ixhuatlán del Café</td>
<td>128,8</td>
<td>si</td>
<td>100</td>
<td>3,3</td>
<td>si</td>
</tr>
<tr>
<td>30062</td>
<td>Chocamán</td>
<td>34,3</td>
<td>si</td>
<td>78</td>
<td>0,9</td>
<td>si</td>
</tr>
<tr>
<td>30146</td>
<td>Sochiapa</td>
<td>16,3</td>
<td>si</td>
<td>100</td>
<td>0,4</td>
<td>si</td>
</tr>
<tr>
<td>30071</td>
<td>Huatusco</td>
<td>194,4</td>
<td>si</td>
<td>96</td>
<td>5,0</td>
<td>si</td>
</tr>
<tr>
<td>30007</td>
<td>Camarón de Tejeda</td>
<td>124,2</td>
<td>si</td>
<td>100</td>
<td>3,2</td>
<td>si</td>
</tr>
<tr>
<td>30200</td>
<td>Zentla</td>
<td>178,2</td>
<td>si</td>
<td>100</td>
<td>4,5</td>
<td>si</td>
</tr>
<tr>
<td>30125</td>
<td>Paso del Macho</td>
<td>400,6</td>
<td>si</td>
<td>100</td>
<td>10,2</td>
<td>si</td>
</tr>
<tr>
<td>30021</td>
<td>Atoyac</td>
<td>122,3</td>
<td>si</td>
<td>100</td>
<td>3,1</td>
<td>si</td>
</tr>
<tr>
<td>30031</td>
<td>Carrillo Puerto</td>
<td>248,6</td>
<td>si</td>
<td>100</td>
<td>6,3</td>
<td>si</td>
</tr>
<tr>
<td>30053</td>
<td>Cuitláhuac</td>
<td>91,4</td>
<td>si</td>
<td>61</td>
<td>2,3</td>
<td>si</td>
</tr>
<tr>
<td>30196</td>
<td>Yanga</td>
<td>48,8</td>
<td>si</td>
<td>56</td>
<td>1,2</td>
<td>si</td>
</tr>
<tr>
<td>30165</td>
<td>Tepatlaxco</td>
<td>59,9</td>
<td>si</td>
<td>100</td>
<td>1,5</td>
<td>si</td>
</tr>
<tr>
<td>30090</td>
<td>Jamapa</td>
<td>131,5</td>
<td>si</td>
<td>100</td>
<td>3,4</td>
<td>si</td>
</tr>
<tr>
<td>30105</td>
<td>Medellín</td>
<td>338,3</td>
<td>si</td>
<td>86</td>
<td>8,6</td>
<td>si</td>
</tr>
<tr>
<td>30049</td>
<td>Cotaxtla</td>
<td>449,3</td>
<td>si</td>
<td>84</td>
<td>11,5</td>
<td>si</td>
</tr>
<tr>
<td>30148</td>
<td>Soledad de Doblado</td>
<td>232,1</td>
<td>si</td>
<td>56</td>
<td>5,9</td>
<td>si</td>
</tr>
<tr>
<td>30044</td>
<td>Córdoba</td>
<td>127,1</td>
<td></td>
<td></td>
<td>3,2</td>
<td></td>
</tr>
<tr>
<td>30028</td>
<td>Boca del Río</td>
<td>19,3</td>
<td>no</td>
<td>51</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>30188</td>
<td>Totutla</td>
<td>6,2</td>
<td>no</td>
<td>6</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>30193</td>
<td>Veracruz</td>
<td>28,1</td>
<td>no</td>
<td>11</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>30011</td>
<td>Alvarado</td>
<td>166,7</td>
<td>no</td>
<td>23</td>
<td>4,8</td>
<td></td>
</tr>
<tr>
<td>30100</td>
<td>Manlio Fabio Altamirano</td>
<td>90,4</td>
<td>no</td>
<td>37</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Municipio</td>
<td>Código</td>
<td>Municipio</td>
<td>Código</td>
<td>Municipio</td>
<td>Código</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------</td>
<td>--------</td>
<td>---------------------------</td>
<td>--------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>30043</td>
<td>Comapa</td>
<td>119,0</td>
<td>no</td>
<td>38</td>
<td>3,0</td>
<td>Influencia</td>
</tr>
<tr>
<td>30024</td>
<td>Tlaltetela</td>
<td>2,6</td>
<td>no</td>
<td>1</td>
<td>0,1</td>
<td>no</td>
</tr>
<tr>
<td>30127</td>
<td>La Perla</td>
<td>3,6</td>
<td>no</td>
<td>3</td>
<td>0,1</td>
<td>no</td>
</tr>
<tr>
<td>30068</td>
<td>Fortín</td>
<td>21,5</td>
<td>no</td>
<td>35</td>
<td>0,5</td>
<td>no</td>
</tr>
<tr>
<td>30014</td>
<td>Amatlán de los Reyes</td>
<td>58,0</td>
<td>no</td>
<td>38</td>
<td>1,5</td>
<td>no</td>
</tr>
<tr>
<td>21179</td>
<td>Tlachichuca</td>
<td>49,3</td>
<td>no</td>
<td>12</td>
<td>1,3</td>
<td>no</td>
</tr>
<tr>
<td>21116</td>
<td>Quimixtlán</td>
<td>3,1</td>
<td>no</td>
<td>2</td>
<td>0,1</td>
<td>no</td>
</tr>
<tr>
<td>21050</td>
<td>Chichiquila</td>
<td>12,6</td>
<td>no</td>
<td>12</td>
<td>0,3</td>
<td>no</td>
</tr>
</tbody>
</table>

C* = Cabecera en los límites de la cuenca; A* = Asignación del municipio a la cuenca
Figura 2.2. Municipios asignados a la Cuenca del Río Jamapa. (Fuente: Elaboración propia con datos de INEGI.)
2.3 Caracterización biofísica de la cuenca

2.3.1 Relieve y rasgos geomorfológicos

2.3.1.1 Zonificación altitudinal de la cuenca

La Cuenca fue dividida en tres grandes zonas de acuerdo a sus diferencias altitudinales, así como a la funcionalidad de tales zonas en el territorio de la cuenca. El cuadro adjunto describe las características de las zonas: cuenca alta, cuenca media y cuenca baja. El mapa correspondiente se muestra en la figura 2.4.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Función principal</th>
<th>Superficie</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuenca alta</td>
<td>Captación</td>
<td>786</td>
<td>20</td>
</tr>
<tr>
<td>Cuenca media</td>
<td>Acumulación y transporte</td>
<td>1776</td>
<td>45</td>
</tr>
<tr>
<td>Cuenca baja</td>
<td>Descarga</td>
<td>1355</td>
<td>34</td>
</tr>
</tbody>
</table>
Figura 2.4. Zonificación altitudinal de la cuenca del río Jamapa. Fuente: Elaboración propia con datos de INECC.
2.3.1.2 Geoformas

Las formas del relieve o geoformas presentes en la cuenca fueron simplificadas a partir de la Cartografía Geomorfológica de México (Ortiz, s/f), el resultado de tal simplificación comprende 15 clases y se muestra en el cuadro adjunto, así como en la figura 2.5. La clase de rampas acumulativas representa la geoforma más extendida (algo más del 50%). A esta clase le siguen la de valles con un 19.4% seguido a cierta distancia de la clase de rampas erosivas con el 7.5%.

<table>
<thead>
<tr>
<th>Geoformología simplificada</th>
<th>Superficie (km²)</th>
<th>Superficie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rampa acumulativa</td>
<td>2063</td>
<td>52,5</td>
</tr>
<tr>
<td>Valles</td>
<td>762</td>
<td>19,4</td>
</tr>
<tr>
<td>Rampa erosiva</td>
<td>294</td>
<td>7,5</td>
</tr>
<tr>
<td>Relieve Carstico</td>
<td>223</td>
<td>5,7</td>
</tr>
<tr>
<td>Montaña</td>
<td>163</td>
<td>4,2</td>
</tr>
<tr>
<td>Llanura eólica con campos de médanos activos.</td>
<td>132</td>
<td>3,4</td>
</tr>
<tr>
<td>Ladera modelada</td>
<td>88</td>
<td>2,2</td>
</tr>
<tr>
<td>Relieve con manifestación volcánica</td>
<td>62</td>
<td>1,6</td>
</tr>
<tr>
<td>Llanura lacustre o fluvial marginal</td>
<td>59</td>
<td>1,5</td>
</tr>
<tr>
<td>Flujo de lava cubierto de piroclástos</td>
<td>58</td>
<td>1,5</td>
</tr>
<tr>
<td>Edificio volcánico</td>
<td>7</td>
<td>0,2</td>
</tr>
<tr>
<td>Relieve periglacial</td>
<td>3</td>
<td>0,1</td>
</tr>
<tr>
<td>Costa acumulativa de isla barrera.</td>
<td>8</td>
<td>0,2</td>
</tr>
<tr>
<td>Relieve glacial</td>
<td>4</td>
<td>0,1</td>
</tr>
</tbody>
</table>
Figura 2.5. Geomorfología simplificada de la cuenca del río Jamapa.
(Fuente: Elaboración propia con datos de Ortiz (s.f.) e INEGI).
2.3.2 Clima actual y proyecciones de cambio climático

De acuerdo a la clasificación climática de Köppen modificada por García (1964), la cuenca del río Jamapa tiene diez climas diferentes (cuadro anexo). Esto se debe, entre otros factores, a la influencia de la altitud del relieve, el cual tiene un rango de 5,670 metros. Si las categorías climáticas son agrupadas por tipo de clima (cuadro anexo y figura 2.8), el más extendido en la cuenca es el cálido subhúmedo en sus tres tipos (69.1%), que predomina en las cuencas media y baja. El segundo clima es el semicálido húmedo con un 19.7% del territorio de la cuenca.

<table>
<thead>
<tr>
<th>Variables climáticas (NOTA: datos a revisar)</th>
<th>Mínima</th>
<th>Máxima</th>
<th>Promedio</th>
<th>Mediana</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Precipitación total anual:</td>
<td>655</td>
<td>2821</td>
<td>1468</td>
<td>1445</td>
<td>mm</td>
</tr>
<tr>
<td>*Temperatura promedio anual:</td>
<td>4.96</td>
<td>26.41</td>
<td>18.55</td>
<td>19.18</td>
<td>ºC</td>
</tr>
</tbody>
</table>

| Climas de acuerdo a la clasificación de Köppen modificada por García (1964) |
|-----------------------------|-------------------------------|-----------------|
| Tipo | Clave García (1964) | Superficie km² |
| | | % |
| Frío | E(T)H | 15 | 0.4 |
| Semifrío subhúmedo | C(E)(w2)(w) | 59 | 1.5 |
| Templado húmedo | C(fm) | 7 | 0.2 |
| | C(m) | 246 | 6.3 |
| Semicálido húmedo | (A)C(fm) | 303 | 7.7 |
| | (A)C(m) | 472 | 12.0 |
| Cálido subhúmedo | Aw1(w) | 1682 | 42.9 |
| | Aw0(w) | 72 | 1.8 |
| | Aw2(w) | 954 | 24.3 |
| Cálido húmedo | Am | 110 | 2.8 |
| Total | | 3,919 | 100 |

*Calculated a partir de datos de CONAGUA y UNAM-UNIATMOS.

En la Cuenca existen 10 estaciones climatológicas operando (cuadro anexo y figura 2.6).
<table>
<thead>
<tr>
<th>Nombre</th>
<th>Municipio</th>
<th>Longitud (grados)</th>
<th>Latitud (grados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coscomatepec</td>
<td>Coscomatepec</td>
<td>-97.0469</td>
<td>19.0706</td>
</tr>
<tr>
<td>Ixhuatlán del café</td>
<td>Ixhuatlán del café</td>
<td>-96.9800</td>
<td>19.0504</td>
</tr>
<tr>
<td>Centro Regional Huatusco</td>
<td>Huatusco</td>
<td>-96.9497</td>
<td>19.1498</td>
</tr>
<tr>
<td>Cuitláhuac</td>
<td>Cuitláhuac</td>
<td>-96.7244</td>
<td>18.8104</td>
</tr>
<tr>
<td>Camarón de tejeda</td>
<td>Camarón de tejeda</td>
<td>-96.6145</td>
<td>19.0235</td>
</tr>
<tr>
<td>Soledad de Doblado</td>
<td>Soledad de Doblado</td>
<td>-96.4240</td>
<td>19.0452</td>
</tr>
<tr>
<td>Los Capulines</td>
<td>Cotaxtla</td>
<td>-96.2920</td>
<td>18.8575</td>
</tr>
<tr>
<td>El Copital</td>
<td>Medellín</td>
<td>-96.2042</td>
<td>18.9675</td>
</tr>
<tr>
<td>El Tejar</td>
<td>Medellín</td>
<td>-96.1576</td>
<td>19.0676</td>
</tr>
<tr>
<td>Paso del toro</td>
<td>Medellín</td>
<td>-96.1346</td>
<td>19.0392</td>
</tr>
<tr>
<td>Elotepec, Huatusco</td>
<td></td>
<td>-97.03</td>
<td>19</td>
</tr>
<tr>
<td>Centro Regional Huatusco</td>
<td></td>
<td>-96.95</td>
<td>19</td>
</tr>
<tr>
<td>Huatusco De Chicuellar</td>
<td></td>
<td>-96.95</td>
<td>19</td>
</tr>
<tr>
<td>El Coyol, Comapa (Cfe)</td>
<td></td>
<td>-96.70</td>
<td>19</td>
</tr>
<tr>
<td>El Tejar, Medellín</td>
<td></td>
<td>-96.15</td>
<td>19</td>
</tr>
<tr>
<td>Coscomatepec Bravo (Dge)</td>
<td></td>
<td>-97.03</td>
<td>19</td>
</tr>
<tr>
<td>Coscomatepec Bravo (Smn)</td>
<td></td>
<td>-97.03</td>
<td>19</td>
</tr>
<tr>
<td>La Posta Paso Del Toro</td>
<td></td>
<td>-96.13</td>
<td>19</td>
</tr>
<tr>
<td>Tetelzingo, Coscomatepec</td>
<td></td>
<td>-97.10</td>
<td>19</td>
</tr>
<tr>
<td>Villa Tejeda</td>
<td></td>
<td>-96.58</td>
<td>19</td>
</tr>
<tr>
<td>Ingenio Central Progreso</td>
<td></td>
<td>-96.53</td>
<td>18</td>
</tr>
<tr>
<td>Campto. I. C. Progreso</td>
<td></td>
<td>-96.53</td>
<td>18</td>
</tr>
<tr>
<td>Paso Del Macho</td>
<td></td>
<td>-96.72</td>
<td>18</td>
</tr>
<tr>
<td>San Alejo,Paso Del Macho</td>
<td></td>
<td>-96.77</td>
<td>18</td>
</tr>
<tr>
<td>Santa Anita, Atoyac</td>
<td></td>
<td>-96.80</td>
<td>18</td>
</tr>
<tr>
<td>Los Capulines, Cotaxtla</td>
<td></td>
<td>-96.33</td>
<td>18</td>
</tr>
<tr>
<td>Paso Nacional El Faro</td>
<td></td>
<td>-96.72</td>
<td>18</td>
</tr>
</tbody>
</table>
Figura 2.6. Tipos de Climas en la Cuenca del río Jamapa. Elaboración propia con datos de INEGI y CONAGUA.
Figura 2.7.- Temperatura media actual y con proyecciones de cambio climático de tres modelos de circulación general
Figura 2.8. Precipitación media anual actual y con proyecciones de cambio climático

Precipitación base (1950-2000)

Modelo MPI, RCP 8.5W/m² (2075-2099)

Modelo HADGEM, RCP 8.5W/m² (2075-2099)

Modelo GFDL, RCP 8.5W/m² (2075-2099)
2.3.3 Hidrografía

2.3.3.1 Parámetros hidrográficos

La Cuenca del Río La Antigua tiene 3,918 km² de superficie. Cuenta con 38 subcuencas, las cuales se pueden clasificar de acuerdo a la jerarquía o número de orden Horton-Strahler que corresponde al cauce principal de la subcuenca, el cual puede ser desde "1" hasta "7". En la tabla incluimos las 10 subcuencas con mayor superficie, las cuales de forma conjunta representan el 65% de la superficie total de la cuenca.

<table>
<thead>
<tr>
<th>Parámetros hidrográficos</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Área de la cuenca</td>
<td>3,918 km²</td>
</tr>
<tr>
<td>Longitud total de cauces</td>
<td>4,306.14 km</td>
</tr>
<tr>
<td>Longitud del río principal</td>
<td>148.47 km</td>
</tr>
<tr>
<td>Densidad de drenaje</td>
<td>1.97 km/km²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10 Subcuencas principales según superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clave</td>
</tr>
<tr>
<td>Jam24</td>
</tr>
<tr>
<td>Jam35</td>
</tr>
<tr>
<td>Jam33</td>
</tr>
<tr>
<td>Jam15</td>
</tr>
<tr>
<td>Jam29</td>
</tr>
<tr>
<td>Jam37</td>
</tr>
<tr>
<td>Jam1</td>
</tr>
<tr>
<td>Jam17</td>
</tr>
<tr>
<td>Jam23</td>
</tr>
<tr>
<td>Jam38</td>
</tr>
</tbody>
</table>

CH=Configuración Hidrográfica, E = Emisora, R–E = Receptora y Emisora, R = Receptora;
*Orden HS = Orden de corrientes de Horton – Strahler. Otro = canales u obras de trasvase

<table>
<thead>
<tr>
<th>Resumen de Subcuencas y Corrientes por Orden HS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orden máxima HS</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>Otro</td>
</tr>
</tbody>
</table>
Estaciones hidrométricas

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Municipio</th>
<th>Longitud (grados)</th>
<th>Latitud (grados)</th>
<th>Altitud (msnmm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capulines</td>
<td>Cotaxtla</td>
<td>18°51’24"</td>
<td>96°17’28"</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>El tejar</td>
<td>Medellín de bravo</td>
<td>19°4’2"</td>
<td>96°9’30"</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Paso del toro</td>
<td>Jamapa</td>
<td>19°2’30"</td>
<td>96°8’27"</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Santa anita</td>
<td>Atoyac</td>
<td>18°54’54"</td>
<td>96°49’18"</td>
<td>568</td>
<td></td>
</tr>
</tbody>
</table>

En la Cuenca existen 4 estaciones hidrométricas, una en la parte media de la cuenca a la altura del municipio de Atoyac (a 568 msnmm) y 3 en la parte media-baja, en los municipios de Cotaxtla, Jamapa y Medellín.

Acuíferos

<table>
<thead>
<tr>
<th>Nombre</th>
<th>km²</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orizaba-Córdoba</td>
<td>151</td>
<td>4</td>
</tr>
<tr>
<td>Costera de Veracruz</td>
<td>568</td>
<td>14</td>
</tr>
<tr>
<td>Costera del Papaloapan</td>
<td>9</td>
<td><1</td>
</tr>
<tr>
<td>Cotaxtla</td>
<td>3112</td>
<td>79</td>
</tr>
<tr>
<td>Los naranjos</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Libres-Oriental</td>
<td>70</td>
<td><1</td>
</tr>
</tbody>
</table>

Con respecto a los acuíferos ordenados por el tamaño de su superficie (cuadro anexo y figura 2.9), el primero corresponde a Cotaxtla que representa cuatro quintas partes del territorio de la cuenca hidrológica. Casi la totalidad de este acuífero está comprendido en los límites de la cuenca. Igualmente tenemos que 14% del territorio de la cuenca hidrológica del río Jamapa coincide con los límites del acuífero costero de Veracruz.
Figura 2.9. Hidrografía en la cuenca del Jamapa. Elaboración propia con datos de INEGI, CONAGUA e INECC.
2.3.3.2 Configuración Hidrográfica

Otro criterio de especial interés para clasificar las subcuencas es a partir de la Configuración Hidrográfica (CH), que toma en cuenta la relación espacial del flujo del drenaje superficial de una subcuenca hacia otra. En particular, si una subcuenca sólo emite agua superficial a partir de la red hidrográfica sin recibir de otra, es denominada Emisora (E). Si también recibe agua superficial del flujo aguas arriba, entonces es clasificada como Receptora-Emisora (R-E). Por otra parte, si la cuenca sólo recibe agua superficial, entonces es denominada Receptora (R). En la cuenca del río Jamapa el 67% de la superficie corresponde a subcuencas emisoras, el 29% a subcuencas receptoras-emisoras y el 3%, una sola subcuenca, a subcuencas receptoras (cuadro adjunto y figura 2.10).

<table>
<thead>
<tr>
<th>Clase de subcuenca</th>
<th>Cantidad de subcuencas</th>
<th>Superficie</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E) Emisoras</td>
<td>23</td>
<td>2635</td>
<td>67.3</td>
</tr>
<tr>
<td>(RE) Receptora – Emisora</td>
<td>7</td>
<td>1158</td>
<td>29.5</td>
</tr>
<tr>
<td>(R) Receptora</td>
<td>1</td>
<td>128</td>
<td>3.2</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>2173.28</td>
<td>99.98</td>
</tr>
</tbody>
</table>

31
Figura 2.10. Configuración hidrográfica de la cuenca del río Jamapa. Fuente: Elaboración propia con datos de INEGI.
2.3.4 Suelos

Los tipos de suelo que ocupan la mayor superficie en la Cuenca son: vertisol (34%), leptosol (32%) y androsol (15%). En menor proporción se encuentran: phaeozem (9%), luvisol (5%) y otros (<5%).

Un vertisol es aquel suelo, generalmente negro, en donde hay un alto contenido de arcilla expansiva que forma profundas grietas. Su textura pesada e inestable molestan al crecimiento forestal. Las tierras con Vertisoles se usan generalmente para pastoreo de ganado. Se ubican en la mayor parte en la cuenca media y baja de la cuenca (figura 2.9). Con respecto a los leptosoles, son suelos muy superficiales, limitados por una roca continua y dura en los primeros 25 cm o con menos del 10 % de tierra fina, y pueden estar en áreas muy erosionadas. Son poco atractivos para la agricultura y presentan una potencialidad muy limitada para cultivos arbóreos o para pastos. Se ubican en la mayor parte en la cuenca media y baja (figura 2.9).

<table>
<thead>
<tr>
<th>Suelos</th>
<th>Clave cartográfica</th>
<th>Grupo de suelo</th>
<th>Superficie km²</th>
<th>Superficie %</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR</td>
<td>Vertisol</td>
<td>1344</td>
<td>34,3</td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>Leptosol</td>
<td>1254</td>
<td>32,0</td>
<td></td>
</tr>
<tr>
<td>AN</td>
<td>Andosol</td>
<td>592</td>
<td>15,1</td>
<td></td>
</tr>
<tr>
<td>PH</td>
<td>Phaeozem</td>
<td>343</td>
<td>8,8</td>
<td></td>
</tr>
<tr>
<td>LV</td>
<td>Luvisol</td>
<td>206</td>
<td>5,3</td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>Arenosol</td>
<td>41</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cambisol</td>
<td>33</td>
<td>0,8</td>
<td></td>
</tr>
</tbody>
</table>
Figura 2.11. Suelos en la Cuenca del río Jamapa. Elaboración propia con datos de INEGI
2.3.5 Vegetación natural actual y sus proyecciones de cambio climático

En el año 2011 la vegetación natural de la Cuenca cubría aproximadamente 572 km², aproximadamente el 14.5% del territorio total de la cuenca. Estaba compuesta por 19 clases diferentes de asociaciones vegetales. Entre las más extendidas: vegetación secundaria arbustiva de selva baja caducifolia (con unos 154 km²), bosque de pino (93 km²) y Vegetación secundaria arbórea de bosque mesófilo de montaña (61 km²). Las demás clases de vegetación se pueden identificar en el cuadro anexo y su distribución espacial en la figura 2.12.

<table>
<thead>
<tr>
<th>Tipo de Vegetación</th>
<th>Superficie serie V (2011)</th>
<th>% respecto total cuenca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetación secundaria arbustiva de selva baja caducifolia</td>
<td>154</td>
<td>3,9</td>
</tr>
<tr>
<td>Bosque de pino</td>
<td>93</td>
<td>2,4</td>
</tr>
<tr>
<td>Vegetación secundaria arbórea de bosque mesófilo de montaña</td>
<td>61</td>
<td>1,6</td>
</tr>
<tr>
<td>Bosque mesófilo de montaña</td>
<td>47</td>
<td>1,2</td>
</tr>
<tr>
<td>Bosque de pino-encino</td>
<td>41</td>
<td>1,1</td>
</tr>
<tr>
<td>Sabanoide</td>
<td>23</td>
<td>0,6</td>
</tr>
<tr>
<td>Bosque de oyamel</td>
<td>21</td>
<td>0,5</td>
</tr>
<tr>
<td>Vegetación secundaria arbórea de selva alta subperennifolia</td>
<td>18</td>
<td>0,5</td>
</tr>
<tr>
<td>Vegetación secundaria arbórea de bosque de pino-encino</td>
<td>17</td>
<td>0,4</td>
</tr>
<tr>
<td>Vegetación secundaria arbórea de selva baja caducifolia</td>
<td>12</td>
<td>0,3</td>
</tr>
<tr>
<td>Vegetación secundaria arbustiva de bosque mesófilo de montaña</td>
<td>12</td>
<td>0,3</td>
</tr>
<tr>
<td>Bosque de encino</td>
<td>11</td>
<td>0,3</td>
</tr>
<tr>
<td>Pradera de alta montaña</td>
<td>11</td>
<td>0,3</td>
</tr>
<tr>
<td>Manglar</td>
<td>9</td>
<td>0,2</td>
</tr>
<tr>
<td>Vegetación secundaria arbustiva de bosque de pino-encino</td>
<td>8</td>
<td>0,2</td>
</tr>
<tr>
<td>Vegetación de dunas costeras</td>
<td>7</td>
<td>0,2</td>
</tr>
<tr>
<td>Popal</td>
<td>2</td>
<td>0,1</td>
</tr>
<tr>
<td>Vegetación secundaria arbustiva de bosque de pino</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Vegetación secundaria herbácea de bosque mesófilo de montaña</td>
<td>1</td>
<td>0,0</td>
</tr>
<tr>
<td>Total en cuenca</td>
<td>572</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Por otra parte, en el año 2002 la cobertura de vegetación natural era de 543 km² (13.8%), por lo que para el 2011 fue registrado un incremento de 29 km² como recuperación de vegetación natural, es decir, registró una tasa de recuperación de 9.6 km² por año.
Además, si se analiza el porcentaje de cobertura de vegetación natural por subcuenca (figura 2.13), resultan tres subcuenca en la clase con mayor cobertura, las cuales son: Jam35, la cual nace en la casa norte del Pico de Orizaba y escurre por las cabeceras municipales de Calcahualco e Ixhuatlán del café con un 61% del territorio de la cuenca con vegetación natural. Le siguen las subcuenca de Jam26, igualmente en la cuenca alta (48%), y Jam34, subcuenca algo más pequeña pero con un importante porcentaje (38%) cubierta por vegetación natural. En términos absolutos son las subcuenca de Jamapa35, Jam 24 y Jam 26 con 189 y 50 kilómetros cuadrados de vegetación natural las que albergan el mayor territorio con vegetación natural. Estas subcuenca deben ser contrastadas con los resultados de la oferta de servicios ambientales (capítulo 3), de igual forma es importante considerarlas en relación a las propuestas de acciones de intervención y en su priorización (capítulo 4).
Figura 2.13. Porcentaje de cobertura de vegetación natural por subcuenca en la cuenca del río Jamapa.
(Fuente: Elaboración propia con datos de INEGI e INECC)
Para estimar la oferta de SAH de la vegetación natural en el contexto del Cambio Climático, fueron analizados los cambios que sufriría ésta bajo diversos escenarios. Para lo cual, la cobertura actual de la vegetación natural (Figura 2.12) fue simplificada a menor cantidad de clases (figura 2.14a) y esta fue modelada bajo tres diferentes escenarios de cambio climático: el llamado MPI-ESMLP\(^1\) (figura 2.14b), el GFDL\(^2\) (figura 2.14c) y el HADGEM\(^3\) (figura 2.14d); con un forzamiento radiativo de 8.5 w/m\(^2\) (escenario pesimista) y un horizonte de tiempo 2075-2099 (Sánchez-Colón, et al., 2016). La superficie de vegetación natural actual o línea base (figura 2.14a) fue contrastada con la correspondiente a cada escenario (figura 2.14b, figura 2.14c y figura 2.14c), para lo cual fue realizado un análisis de cambios con datos en formato raster y como síntesis fue creada un matriz de cambios.

En el mapa base se observan 5 grandes clases de vegetación: el bosque de coníferas (con 27,405 ha.), la selva seca (10,993 ha.), la selva húmeda (7,118 ha.), el bosque de latifoliadas (5,725 ha.) y la vegetación hidrófila (2,475 ha.). Aplicandolos 3 modelos climáticos se obtiene que para el periodo 2075-2099 serían 5 igualmente las clases de vegetación en la cuenca, aumentarían en superficie los bosques de latifoliadas y las selvas secas, se reducirían los bosques de coníferas y la vegetación hidrófila y desaparecería la selva húmeda (Tabla 2.1). Los 3 modelos identifican la aparición de una nueva clase para la cuenca, la vegetación halófila. Los resultados indican que las superficies de vegetación natural más afectadas serían los bosques de coníferas que quedarían entre el 72 y el 84% de la superficie actual. Estos bosques cambiarían principalmente a bosque de latifoliadas, los cuales aumentarían la superficie entre un 100% y un 157% respecto a la superficie actual. Estos cambios se darían principalmente en la cuenca alta en las zonas de Huatusco y Coscomatepec. Además de los cambios en los bosques de coníferas se estima que desaparezca por completo la selva húmeda de la cuenca, cambiando a bosque de latifoliadas y selva seca. Ambos cambios ocurrirían en la cuenca media y media-baja. La selva seca aumentaría de manera global su superficie alrededor de un 55%. Los tres modelos también preveen que surja una nueva clase en la cuenca, se trata de la vegetación halófila que aparecería a partir de la vegetación hidrófila en la parte baja de la cuenca y representaría entre 750 y 1270 hectáreas. Llama la atención la formación, identificada por los 3 modelos, de unas 1,200 ha. de vegetación hidrófila en la parte alta de la cuenca a partir de lo que actualmente son praderas de alta montaña.

\(^{1}\) Modelo desarrollado por el Instituto Max Planck para la meteorología (http://www.mpimet.mpg.de/en/science/models/mpi-esm/)

\(^{2}\) Modelo desarrollado por el laboratorio geofísico de dinámica de fluidos (GFDL- Geophysical Fluid Dynamics Laboratory) de la Universidad de Princeston. Más información ver: https://www.gfdl.noaa.gov/climate-modeling/

Tabla 2.1. Cambio de la vegetación natural actual vs tres proyecciones de cambio climático para el horizonte 2075-2099 (en color rojo la estructura vegetal que desaparece bajo estos escenarios de cambio climático; en amarillo el porcentaje de cobertura original que permanece en la misma clase y en color verde el porcentaje de la cobertura original que cambia a la clase)

<table>
<thead>
<tr>
<th>MODELO DE CIRCULACIÓN GENERAL</th>
<th>CAMBIO A</th>
<th>Estructuras vegetales actuales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bosque de coníferas (27450 ha.)</td>
</tr>
<tr>
<td>GFDL</td>
<td>Bosque de coníferas</td>
<td>84</td>
</tr>
<tr>
<td>HADGEM</td>
<td>Bosque de coníferas</td>
<td>72</td>
</tr>
<tr>
<td>MPI_ESMLP</td>
<td>Bosque de coníferas</td>
<td>74</td>
</tr>
<tr>
<td>GFDL</td>
<td>Bosque de latifoliadas</td>
<td>57</td>
</tr>
<tr>
<td>HADGEM</td>
<td>Bosque de latifoliadas</td>
<td>115</td>
</tr>
<tr>
<td>MPI_ESMLP</td>
<td>Bosque de latifoliadas</td>
<td>104</td>
</tr>
<tr>
<td>GFDL</td>
<td>Selva húmeda</td>
<td></td>
</tr>
<tr>
<td>HADGEM</td>
<td>Selva húmeda</td>
<td></td>
</tr>
<tr>
<td>MPI_ESMLP</td>
<td>Selva húmeda</td>
<td></td>
</tr>
<tr>
<td>GFDL</td>
<td>Selva seca</td>
<td>42</td>
</tr>
<tr>
<td>HADGEM</td>
<td>Selva seca</td>
<td>43</td>
</tr>
<tr>
<td>MPI_ESMLP</td>
<td>Selva seca</td>
<td>43</td>
</tr>
<tr>
<td>GFDL</td>
<td>Vegetación hidrófila</td>
<td>49</td>
</tr>
<tr>
<td>HADGEM</td>
<td>Vegetación hidrófila</td>
<td>49</td>
</tr>
<tr>
<td>MPI_ESMLP</td>
<td>Vegetación hidrófila</td>
<td>49</td>
</tr>
<tr>
<td>GFDL</td>
<td>Vegetación halófila</td>
<td></td>
</tr>
<tr>
<td>HADGEM</td>
<td>Vegetación halófila</td>
<td></td>
</tr>
<tr>
<td>MPI_ESMLP</td>
<td>Vegetación halófila</td>
<td></td>
</tr>
</tbody>
</table>
2.3.6. Uso de Suelo

El uso de suelo comprede acciones, actividades e intervenciones que efectua la sociedad sobre el terreno con el propósito de producir y generar valor, esto implica transformar los lugares en espacio social y productivo. El medio natural es modificado a través de procesos de gestión, planeación e inversión, para dar soporte a actividades productivas, bienestar social y asentamientos humanos. De esta manera, los ecosistemas naturales se convierten en ambientes transformados, tales como: campos de cultivo, pastizales cultivados, bosques cultivados, estanques acuícolas, represas, poblados y ciudades. Describir el uso de suelo de una cuenca permite conocer el espacio creado por el desarrollo de sus actividades económicas vinculadas al bienestar social en ese territorio. El uso de suelo es así un indicador directo de la importancia de tales actividades.

En la sección 2.3.5 fue mencionado que el 14.5% de la Cuenca presenta cobertura de vegetación natural. En consecuencia, el 85.5% de su superficie de la cuenca corresponde a ambientes que han sido transformados o modificados de alguna forma (cuadro anexo sobre uso de suelo). La categoría de uso de suelo más extendida es la agrícola, con 2250 km2 y el 57% de la superficie total de la cuenca, seguida por el uso de suelo pecuario al que se le destinan 1030 km2 y algo más de una cuarta parte de la superficie de la cuenca. En menor proporción se encuentran las zonas urbanas y asentamientos humanos en general (1.2%), así como los cuerpos de agua (0.6).

<table>
<thead>
<tr>
<th>Uso de suelo</th>
<th>Superficie serie V (2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>km²</td>
</tr>
<tr>
<td>Cuerpo de Agua</td>
<td>23</td>
</tr>
<tr>
<td>Urbano y Asentamientos humanos</td>
<td>46</td>
</tr>
<tr>
<td>Agrícola</td>
<td>2249</td>
</tr>
<tr>
<td>Pecuario</td>
<td>1030</td>
</tr>
<tr>
<td>Vegetación natural</td>
<td>572</td>
</tr>
<tr>
<td>Total</td>
<td>3921</td>
</tr>
</tbody>
</table>

La distribución de estos usos de suelo es mostrada en la figura 2.13. En general, el uso de suelo agrícola está localizado en la parte inferior de la cuenca alta, en la totalidad de la parte media e intercalado en la cuenca baja. El uso de suelo pecuario se concentra en la cuenca baja y en la última parte de la cuenca media. Para la definición de actividades de intervención en el territorio, en el marco del Manejo Integrado de Cuencas, resulta importante consultar el uso de suelo (figura 2.15), contrastarlo con los suelos (figura 2.11) y con la superficie ejidal (figura 2.21).
Figura 2.15. Uso simplificado del suelo en la cuenca del río Jamapa. Fuente: Elaboración propia con datos de INEGI.
2.3.7 Cambio de Uso de Suelo y Cobertura del Suelo

Este apartado integra las superficies de vegetación natural (sección 2.3.5) con las categorías de uso de suelo (sección 2.3.6), el propósito es conocer su dinámica espacio-temporal para el periodo 2002-2011. Aunque son pocos años analizados, este ejercicio permite identificar la ubicación de áreas más dinámicas, tendencias, patrones y tasas de cambio.

El uso de suelo más dinámico fue la cobertura de vegetación natural que incrementó un 0.7%, seguido del uso agro-pecuario y urbano que aumentaron en 8 km², un 0.02% del total del territorio de la cuenca.

<table>
<thead>
<tr>
<th>Clase / Tipo de Uso o cobertura del suelo</th>
<th>Superficie</th>
<th>Cambio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>km²</td>
<td>%</td>
</tr>
<tr>
<td>Cuerpo de Agua</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>Urbano</td>
<td>38</td>
<td>46</td>
</tr>
<tr>
<td>Agrícola</td>
<td>3271*</td>
<td>2249</td>
</tr>
<tr>
<td>Pecuario</td>
<td>1030</td>
<td>263</td>
</tr>
<tr>
<td>Vegetación Natural</td>
<td>543</td>
<td>572</td>
</tr>
</tbody>
</table>

*En la serie 3 no se desagregó el uso agrícola y pecuario habiendo el uso de suelo IAPF
2.4 Caracterización poblacional de la Cuenca

2.4.1 Caracterización de la población

La cuenca del río Jamapa tiene al menos 521,661 según el último censo de INEGI disponible del año 2010. Esta población total se obtuvo de sumar todas las localidades urbanas y rurales en la cuenca, sin embargo hay algunas localidades que quedan parcialmente incluidas en la cuenca y no se asignaron a la misma. Su inclusión poblacional ameritaría un trabajo a nivel de colonia (caso sobre todo de Córdoba pero también de parte de Veracruz y Boca del Río).

Las principales localidades urabanas de la cuenca son Huatusco (con unos 31mil habitantes), Coscomatepec y Potrero Nuevo (estas dos con unos 15 mil habitantes cada una) En total la cuenca cuenta con 29 localidades urbanas y más de mil seiscientas localidades rurales.

Para caracterizar a la población fueron seleccionados nueve indicadores con valor absoluto, extraídos del censo de población y vivienda 2010 del INEGI, los cuales son reportados para toda la cuenca y para las diez subcuencas más pobladas (cuadro anexo). A partir de estos indicadores censales, fueron derivados siete indicadores en porcentaje, así como el índice de dependencia socio-económica de la población (IDSEP), el cual sintetiza la información proveida por los primeros (cuadro anexo).

<table>
<thead>
<tr>
<th>Nombre*</th>
<th>Pob*</th>
<th>% Pob cuenca</th>
<th>M*</th>
<th>F*</th>
<th>Infantil (<15)*</th>
<th>Mayor (>60)*</th>
<th>Ind >3*</th>
<th>PEA*</th>
<th>PCSS*</th>
<th>ΣGPE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jam38</td>
<td>45.700</td>
<td>8,8</td>
<td>21.887</td>
<td>23.703</td>
<td>12.934</td>
<td>2.864</td>
<td>1</td>
<td>20.344</td>
<td>30.472</td>
<td>7,5</td>
</tr>
<tr>
<td>Jam13</td>
<td>39.907</td>
<td>7,6</td>
<td>18.973</td>
<td>20.930</td>
<td>11.436</td>
<td>3.543</td>
<td>3</td>
<td>15.864</td>
<td>23.726</td>
<td>7,7</td>
</tr>
<tr>
<td>Jam33</td>
<td>37.471</td>
<td>7,2</td>
<td>18.397</td>
<td>19.024</td>
<td>10.145</td>
<td>4.199</td>
<td>0</td>
<td>14.742</td>
<td>21.396</td>
<td>5,6</td>
</tr>
<tr>
<td>Jam30</td>
<td>35.836</td>
<td>6,9</td>
<td>17.320</td>
<td>18.479</td>
<td>11.922</td>
<td>3.318</td>
<td>2</td>
<td>13.263</td>
<td>11.541</td>
<td>4,4</td>
</tr>
<tr>
<td>Jam36</td>
<td>35.760</td>
<td>6,9</td>
<td>16.858</td>
<td>18.856</td>
<td>10.796</td>
<td>3.079</td>
<td>0</td>
<td>14.974</td>
<td>18.000</td>
<td>5,4</td>
</tr>
<tr>
<td>Jam1</td>
<td>34.562</td>
<td>6,6</td>
<td>16.451</td>
<td>17.985</td>
<td>9.974</td>
<td>3.468</td>
<td>0</td>
<td>12.546</td>
<td>20.703</td>
<td>5,1</td>
</tr>
<tr>
<td>Jam35</td>
<td>33.995</td>
<td>6,5</td>
<td>16.783</td>
<td>17.171</td>
<td>12.637</td>
<td>2.901</td>
<td>0</td>
<td>10.788</td>
<td>11.534</td>
<td>4,4</td>
</tr>
<tr>
<td>Jam24</td>
<td>32.531</td>
<td>6,2</td>
<td>15.821</td>
<td>16.537</td>
<td>9.424</td>
<td>3.341</td>
<td>0</td>
<td>12.067</td>
<td>21.316</td>
<td>5,1</td>
</tr>
<tr>
<td>Jam29</td>
<td>25.235</td>
<td>4,8</td>
<td>12.301</td>
<td>12.674</td>
<td>7.181</td>
<td>2.484</td>
<td>0</td>
<td>9.855</td>
<td>14.695</td>
<td>7,8</td>
</tr>
</tbody>
</table>

CUENCA JAMAPA

| 521.661 | 100 | 253.027 | 267.086 | 159.348 | 49.487 | 13 | 195.943 | 275.747 | 5,52 |

*Notas: Nombre = subcuenca o cuenca completa, Pob: Población, %Pob = porcentaje de población total, M = población masculina, F = población femenina, Ind >3 = población mayor a 3 años que habla lengua indígena, Infantil <15 = población infantil menor a 15 años de edad, Mayor >60 = población de 60 años de edad y más, PEA = población económicamente activa, PCSS = población derechohabiente a seguridad social, ΣGPE = suma del grado promedio de estudios, representa la suma del promedio de grados escolares aprobados por las personas de 15 años y más,
<table>
<thead>
<tr>
<th>Nombre*</th>
<th>%DEdad*</th>
<th>%Ind >3*</th>
<th>%DEco*</th>
<th>%NDSS*</th>
<th>%IGPE*</th>
<th>DPEs*</th>
<th>IDSEP*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jam38</td>
<td>35</td>
<td>0,002</td>
<td>55</td>
<td>33</td>
<td>25</td>
<td>45</td>
<td>32,2</td>
</tr>
<tr>
<td>Jam13</td>
<td>38</td>
<td>0,008</td>
<td>60</td>
<td>41</td>
<td>23</td>
<td>100</td>
<td>43,5</td>
</tr>
<tr>
<td>Jam33</td>
<td>38</td>
<td>0</td>
<td>61</td>
<td>43</td>
<td>44</td>
<td>14</td>
<td>33,3</td>
</tr>
<tr>
<td>Jam30</td>
<td>43</td>
<td>0,006</td>
<td>63</td>
<td>68</td>
<td>56</td>
<td>44</td>
<td>45,4</td>
</tr>
<tr>
<td>Jam36</td>
<td>39</td>
<td>0</td>
<td>58</td>
<td>50</td>
<td>46</td>
<td>77</td>
<td>45,1</td>
</tr>
<tr>
<td>Jam1</td>
<td>39</td>
<td>0</td>
<td>64</td>
<td>40</td>
<td>49</td>
<td>20</td>
<td>35,2</td>
</tr>
<tr>
<td>Jam35</td>
<td>46</td>
<td>0</td>
<td>68</td>
<td>66</td>
<td>56</td>
<td>12</td>
<td>41,3</td>
</tr>
<tr>
<td>Jam24</td>
<td>39</td>
<td>0</td>
<td>63</td>
<td>34</td>
<td>49</td>
<td>6</td>
<td>32,0</td>
</tr>
<tr>
<td>Jam18</td>
<td>39</td>
<td>0,003</td>
<td>61</td>
<td>54</td>
<td>37</td>
<td>45</td>
<td>39,4</td>
</tr>
<tr>
<td>Jam29</td>
<td>38</td>
<td>0</td>
<td>61</td>
<td>42</td>
<td>22</td>
<td>10</td>
<td>28,9</td>
</tr>
<tr>
<td>CUENCA JAMAPA</td>
<td>40</td>
<td>0,002</td>
<td>62</td>
<td>47</td>
<td>45</td>
<td>45</td>
<td>40</td>
</tr>
</tbody>
</table>

%Ind >3 = porcentaje estandarizado de población mayor a 3 años que habla lengua indígena y no habla español en relación al mismo grupo de población,

%DEco = porcentaje de población con dependencia económica ((Pob-PEA)x100)/Pob,

%DEdad = porcentaje de población dependiente por edad comprende niños menores de 15 años y adultos de tercera edad, de 60 y más años, ambos grupos resultan también más sensibles a las enfermedades,

%NDSS = porcentaje de población no derechohabiente a seguridad social ((Pob-PCSS)x100)/Pob,

%IGPE = inverso del grado promedio de estudios aprobados por las personas de 15 años y más,

%DPEs= densidad de población estandarizada con respecto al valor máximo de cada cuenca,

IDSEP = índice dependencia socioeconómica de la población (((%Ind >2 + %DEco + %DEdad + %NDSS + %IGPE + %DPEs)/6). Fuente: elaboración propia con datos de INEGI.

El IDSEP puede tener valores de 0 a 100. Entre más alto sea el valor para el IDSEP, mayor dependencia socioeconómica tendrá su población. El resultado del IDSEP para toda la Cuenca fue de 40 y corresponde a un valor medio, el indicador de población indígena que no habla español resultó ser el más bajo, y por otra parte, densidad de población así como población con dependencia económica fueron los más altos (figura 2.16).
Con respecto a las subcuencas, en la parte central de la Cuenca Alta, la subcuenca Jam 11 registró el menor valor del índice de dependencia socioeconómica (28). Las subcuencas con valores de este índice mayores a la media de la cuenca, es decir mayores a 40, las encontramos cerca de las 3 principales zonas urbanas de la cuenca alta (Huatusco, Coscomatepec y Córdoba). Las subcuencas de la parte media y baja de la cuenca presentan valores bajos para este índice (figura 2.17).
Figura 2.17. Caracterización de la población de la cuenca del río Jamapa a partir del índice de dependencia socioeconómica de su población.

Elaboración propia con datos de INEGI.
2.4.2 Localidades y dispersión de población rural

De acuerdo con el Censo de Población y Vivienda 2010, las localidades que conformaban la cuenca eran 1692, de las cuales 29 eran urbanas (con más de 2500 habitantes) y 1663 rurales. La población total de la Cuenca era de 521,661 habitantes, de los cuales 234,260 (44.9%) vivían en localidades urbanas y 287,401 (55.1%) vivían en localidades rurales. Como se mencionaba anteriormente la población que habita en la cuenca es en realidad mayor pues en este cálculo no se incluyeron las colonias de las ciudades de Córdoba, y unas pocas de Boca del Río y parte de Veracruz que forman parte del territorio de la cuenca.

El índice de Demangeon (Gutiérrez, 1992) permite conocer el grado de concentración y dispersión de la población al interior de una Cuenca. La importancia y magnitud de la población dispersa, que fundamentalmente es rural, es muy alta en las cuencas Mexicanas. Este índice, establece las relaciones entre la población de todas las localidades rurales y el número de localidades, con respecto a la población total de la cuenca (cuadro anexo). En general, la población dispersa está estrictamente relacionada con la geografía rural, ya que la población vive en sus parcelas o en las que trabaja. Y la concentración está relacionada con la geografía urbana, ya que la gente se dedica al sector servicios o secundario y esto implica concentración de la población. Sin embargo, el índice de dispersión en la cuenca permite identificar la coexistencia de subcuencas con población en localidades urbanas y al mismo tiempo en localidades rurales. El índice de dispersión rural o IDR de Demangeon fue de 916 para toda la cuenca.

<table>
<thead>
<tr>
<th>Ambiente*</th>
<th>Rural 2010</th>
<th>Urbano 2010</th>
<th>Total 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V. A.</td>
<td>V. R.%</td>
<td>V. A.</td>
</tr>
<tr>
<td>Localidades</td>
<td>Lr 1663</td>
<td>98.25</td>
<td>29 1.75</td>
</tr>
<tr>
<td>Población</td>
<td>Pr 287,401</td>
<td>55.1</td>
<td>234,260 44.9</td>
</tr>
<tr>
<td>Índice de Dispersión Rural (Demangeon), IDR: (Pr * Lr)/Pt =</td>
<td>916</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*De acuerdo con el INEGI una localidad es urbana si tiene más de 2500 habitantes, o si es cabecera municipal aun con menos habitantes. V.A. = valor absoluto. V.R. = valor relativo. Lr = localidad rural, Pr = población rural, Pu = población urbana, Pt = población total, Ti = Total de localidades, IDR = Índice de dispersión rural. Fuente: Elaboración propia con datos de INEGI.
Figura 2.18. Localidades rurales y urbanas en la cuenca del río Jamapa. Elaboración propia con datos de INEGI.
<table>
<thead>
<tr>
<th>Clave Subcuenca</th>
<th>Población rural (Pr)</th>
<th>Población urbana (Pu)</th>
<th>Población total (Pt)</th>
<th>Localidades Rurales (Lr)</th>
<th>IDR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V. A.</td>
<td>V. R.%</td>
<td>V. A.</td>
<td>V. R.%</td>
<td></td>
</tr>
<tr>
<td>Jam1</td>
<td>20.923</td>
<td>61</td>
<td>13.651</td>
<td>39</td>
<td>34.562</td>
</tr>
<tr>
<td>Jam2</td>
<td>934</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>934</td>
</tr>
<tr>
<td>Jam3</td>
<td>191</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>191</td>
</tr>
<tr>
<td>Jam4</td>
<td>5.079</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>5.077</td>
</tr>
<tr>
<td>Jam5</td>
<td>2.467</td>
<td>36</td>
<td>4.465</td>
<td>64</td>
<td>6.931</td>
</tr>
<tr>
<td>Jam6</td>
<td>2.816</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>2.814</td>
</tr>
<tr>
<td>Jam7</td>
<td>4.589</td>
<td>21</td>
<td>17.042</td>
<td>79</td>
<td>21.625</td>
</tr>
<tr>
<td>Jam8</td>
<td>974</td>
<td>101</td>
<td>0</td>
<td>0</td>
<td>969</td>
</tr>
<tr>
<td>Jam9</td>
<td>5.460</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>5.460</td>
</tr>
<tr>
<td>Jam10</td>
<td>2.396</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>2.391</td>
</tr>
<tr>
<td>Jam11</td>
<td>1.001</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>1.001</td>
</tr>
<tr>
<td>Jam12</td>
<td>1.491</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>1.490</td>
</tr>
<tr>
<td>Jam13</td>
<td>14.865</td>
<td>37</td>
<td>25.044</td>
<td>63</td>
<td>39.907</td>
</tr>
<tr>
<td>Jam14</td>
<td>2.680</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>2.680</td>
</tr>
<tr>
<td>Jam15</td>
<td>7.466</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>7.459</td>
</tr>
<tr>
<td>Jam16</td>
<td>1.280</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>1.277</td>
</tr>
<tr>
<td>Jam17</td>
<td>5.165</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>5.156</td>
</tr>
<tr>
<td>Jam18</td>
<td>12.272</td>
<td>43</td>
<td>16.325</td>
<td>57</td>
<td>28.588</td>
</tr>
<tr>
<td>Jam19</td>
<td>2.582</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>2.580</td>
</tr>
<tr>
<td>Jam20</td>
<td>2.887</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>2.887</td>
</tr>
<tr>
<td>Jam21</td>
<td>1.891</td>
<td>38</td>
<td>3.119</td>
<td>62</td>
<td>5.004</td>
</tr>
<tr>
<td>Jam22</td>
<td>5.240</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>5.235</td>
</tr>
<tr>
<td>Jam23</td>
<td>6.354</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>6.343</td>
</tr>
<tr>
<td>Jam24</td>
<td>19.136</td>
<td>59</td>
<td>13.413</td>
<td>41</td>
<td>32.531</td>
</tr>
<tr>
<td>Jam25</td>
<td>11.747</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>11.741</td>
</tr>
<tr>
<td>Jam26</td>
<td>11.876</td>
<td>50</td>
<td>11.773</td>
<td>50</td>
<td>23.648</td>
</tr>
<tr>
<td>Jam27</td>
<td>715</td>
<td>21</td>
<td>2.734</td>
<td>79</td>
<td>3.449</td>
</tr>
<tr>
<td>Jam28</td>
<td>2.984</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>2.984</td>
</tr>
<tr>
<td>Jam29</td>
<td>14.078</td>
<td>56</td>
<td>11.200</td>
<td>44</td>
<td>25.235</td>
</tr>
<tr>
<td>Jam30</td>
<td>16.238</td>
<td>45</td>
<td>19.600</td>
<td>55</td>
<td>35.836</td>
</tr>
<tr>
<td>Jam31</td>
<td>6.784</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>6.784</td>
</tr>
<tr>
<td>Jam32</td>
<td>7.579</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>7.579</td>
</tr>
<tr>
<td>Jam33</td>
<td>18.434</td>
<td>49</td>
<td>16.326</td>
<td>44</td>
<td>37.471</td>
</tr>
<tr>
<td>Jam34</td>
<td>4.442</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>4.440</td>
</tr>
<tr>
<td>Jam35</td>
<td>27.351</td>
<td>80</td>
<td>6.649</td>
<td>20</td>
<td>33.995</td>
</tr>
<tr>
<td>Jam36</td>
<td>4.459</td>
<td>12</td>
<td>31.305</td>
<td>88</td>
<td>35.760</td>
</tr>
<tr>
<td>Jam37</td>
<td>15.313</td>
<td>64</td>
<td>8.634</td>
<td>36</td>
<td>23.947</td>
</tr>
<tr>
<td>Jam38</td>
<td>15.463</td>
<td>34</td>
<td>30.255</td>
<td>66</td>
<td>45.700</td>
</tr>
</tbody>
</table>

TODA LA CUENCA

| | 287.401 | 55 | 234.260 | 45 | 521.661 | 1.663 | 916 |

De acuerdo con el INEGI una localidad es urbana si tiene más de 2500 habitantes, o si es cabecera municipal aun con menos habitantes. V.A. = valor absoluto. V.R. = valor relativo. Lr = localidad rural. Pr = población rural. Pu = población urbana, Pt = población total, Tl = Total de localidades, IDR = Índice de dispersión rural. Fuente: Elaboración propia con datos de INEGI.
En el Manejo Integrado de Cuencas, la información sobre la dispersión de la población rural, permite discriminar subcuencas que por su alta concentración poblacional presupongan una presión mayor sobre los recursos naturales, y así diferenciarlas de aquellas que por su gran tamaño tengan un número de habitantes similar, pero con bajas concentraciones. Este indicador también es útil para establecer el perfil económico de cada subcuenca o grupo de ellas que conformen una región previamente delimitada, de igual forma puede servir para establecer dinámicas económicas regionales en el sector primario, así como para ubicar zonas con posibles niveles de marginación altos, precisamente por la dispersión y la inaccesibilidad a los asentamientos.

Las subcuencas con la clase de dispersión más fueron: la subcuenca Jam 27 (Tlamatoca Potrerillo), que presentó un IDR de 0.4; las subcuencas Jam 5 (Paraje Nuevo), con un IDR de 2 y las subcuenca Jam3, Jam11 y Jam36 con un IDR de 3 (figura 2.19).

Por otra parte, las subcuencas con la categoría más alta de dispersión pueden incluir localidades con las condiciones socioeconómicas más precarias, niveles de marginación altos, asociados precisamente por la dispersión y la inaccesibilidad a los asentamientos. En esta categoría se encuentran la subcuenca Jam24 (Paso del Macho), que está ubicada en la cuenca media con IDR de 107 y la Jam15 que está ubicada en la cuenca media con IDR de 94 entre otras.

Además de este análisis, en la interpretación sobre la dispersión de la población rural, se debe considerar también el medio físico, ya que según los elementos naturales disponibles, la población tendrá diferente emplazamiento. Otro factor clave son las vías de comunicación, ya que favorecen la dispersión/concentración del hábitat, la cual puede ser modificada por la acción humana en la cuenca.
Figura 2.19. Índice de Dispersión Rural en la cuenca del río Jamapa. Elaboración propia con datos de INEGI.
2.4.3. Densidad de población

La distribución de la densidad de la población en la cuenca está polarizada en dirección este-oeste. Las altas densidades están concentradas en la mitad sur-este, y en una cuenca de la parte baja (con parte de las cabeceras de Veracruz y Boca del río) (figura 2.20). Las altas densidades del noroeste comprenden cuatro subcuencas: Jam13-Córdoba (764 hab/km²), Jam36-Huatusco (595 hab/km²) y Jam5-Paraje Nuevo (452 hab/km²).

En contraste, la parte que corresponde a mitad este de la cuenca, presenta las densidades de población con valores menores a 100 hab/km². En total 15 subcuencas presentan estas bajas densidades.

<table>
<thead>
<tr>
<th>Clave de subcuenca</th>
<th>Población</th>
<th>Área</th>
<th>Densidad de población</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absoluta</td>
<td>Relativa respecto al total de la cuenca (%)</td>
<td>Km²</td>
</tr>
<tr>
<td>Jam1</td>
<td>34.562</td>
<td>6,6</td>
<td>207</td>
</tr>
<tr>
<td>Jam2</td>
<td>934</td>
<td>0,2</td>
<td>21</td>
</tr>
<tr>
<td>Jam3</td>
<td>191</td>
<td>0,0</td>
<td>3</td>
</tr>
<tr>
<td>Jam4</td>
<td>5.077</td>
<td>1,0</td>
<td>57</td>
</tr>
<tr>
<td>Jam5</td>
<td>6.931</td>
<td>1,3</td>
<td>15</td>
</tr>
<tr>
<td>Jam6</td>
<td>2.814</td>
<td>0,5</td>
<td>72</td>
</tr>
<tr>
<td>Jam7</td>
<td>21.625</td>
<td>4,1</td>
<td>84</td>
</tr>
<tr>
<td>Jam8</td>
<td>969</td>
<td>0,2</td>
<td>7</td>
</tr>
<tr>
<td>Jam9</td>
<td>5.460</td>
<td>1,0</td>
<td>16</td>
</tr>
<tr>
<td>Jam10</td>
<td>2.391</td>
<td>0,5</td>
<td>53</td>
</tr>
<tr>
<td>Jam11</td>
<td>1.001</td>
<td>0,2</td>
<td>26</td>
</tr>
<tr>
<td>Jam12</td>
<td>1.490</td>
<td>0,3</td>
<td>12</td>
</tr>
<tr>
<td>Jam13</td>
<td>39.907</td>
<td>7,6</td>
<td>52</td>
</tr>
<tr>
<td>Jam14</td>
<td>2.680</td>
<td>0,5</td>
<td>42</td>
</tr>
<tr>
<td>Jam15</td>
<td>7.459</td>
<td>1,4</td>
<td>271</td>
</tr>
<tr>
<td>Jam16</td>
<td>1.277</td>
<td>0,2</td>
<td>60</td>
</tr>
<tr>
<td>Jam17</td>
<td>5.156</td>
<td>1,0</td>
<td>206</td>
</tr>
<tr>
<td>Jam18</td>
<td>28.588</td>
<td>5,5</td>
<td>80</td>
</tr>
<tr>
<td>Jam19</td>
<td>2.580</td>
<td>0,5</td>
<td>24</td>
</tr>
<tr>
<td>Jam20</td>
<td>2.887</td>
<td>0,6</td>
<td>19</td>
</tr>
<tr>
<td>Jam21</td>
<td>5.004</td>
<td>1,0</td>
<td>92</td>
</tr>
<tr>
<td>Jam22</td>
<td>5.235</td>
<td>1,0</td>
<td>103</td>
</tr>
<tr>
<td>Jam23</td>
<td>6.343</td>
<td>1,2</td>
<td>148</td>
</tr>
<tr>
<td>Jam24</td>
<td>32.531</td>
<td>6,2</td>
<td>483</td>
</tr>
<tr>
<td>Jam25</td>
<td>11.741</td>
<td>2,3</td>
<td>91</td>
</tr>
<tr>
<td>Jam26</td>
<td>23.648</td>
<td>4,5</td>
<td>104</td>
</tr>
<tr>
<td>Jam27</td>
<td>3.449</td>
<td>0,7</td>
<td>13</td>
</tr>
<tr>
<td>Jam28</td>
<td>2.984</td>
<td>0,6</td>
<td>28</td>
</tr>
<tr>
<td>Jam29</td>
<td>25.235</td>
<td>4,8</td>
<td>260</td>
</tr>
<tr>
<td>Jam30</td>
<td>35.836</td>
<td>6,9</td>
<td>104</td>
</tr>
<tr>
<td>Jam31</td>
<td>6.784</td>
<td>1,3</td>
<td>39</td>
</tr>
<tr>
<td>Jam32</td>
<td>7.579</td>
<td>1,5</td>
<td>67</td>
</tr>
<tr>
<td>Jam33</td>
<td>37.471</td>
<td>7,2</td>
<td>297</td>
</tr>
<tr>
<td>Jam34</td>
<td>4,440</td>
<td>0,9</td>
<td>38</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>Jam35</td>
<td>33,995</td>
<td>6,5</td>
<td>304</td>
</tr>
<tr>
<td>Jam36</td>
<td>35,760</td>
<td>6,9</td>
<td>60</td>
</tr>
<tr>
<td>Jam37</td>
<td>23,947</td>
<td>4,6</td>
<td>235</td>
</tr>
<tr>
<td>Jam38</td>
<td>45,700</td>
<td>8,8</td>
<td>128</td>
</tr>
</tbody>
</table>
Figura 2.20. Densidad de población en la cuenca del río Jamapa. Elaboración propia con datos de INEGI.
2.5 Caracterización económica

2.5.1 Superficie ejidal

La superficie de la Cuenca tiene 1,179 km² que corresponden a ejidos, esto representa el 30% del territorio de la cuenca (figura 2.21). En la cuenca existen 420 ejidos, 100 de los cuales cuentan con más de 400 ha. La mayor parte se encuentran localizados en la zona media-alta de la cuenca y en la cuenca baja de la misma. Los ejidos con una mayor superficie dentro de la cuenca son Matlaluca (municipio de Zentla) con casi 3 mil ha., Paso Mulato (mpio de Paso del Macho) con caso 2mil ha., la Laguna y monte de castillo (mpio. De Medellín) y La Piedad (mpio. de Alvarado) con unas 1800 hectáreas cada una.

<table>
<thead>
<tr>
<th>Tenencia de la Tierra</th>
<th>Superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hectáreas</td>
</tr>
<tr>
<td>Ejidos</td>
<td>117,907</td>
</tr>
</tbody>
</table>

Figura 2.21. Superficie ejidal en la cuenca del río Jamapa.
(Fuente: Elaboración propia con datos de Registro Agrario Nacional e INEGI).
2.5.2 Unidades económicas

De acuerdo con el Directorio Estadístico Nacional de Unidades Económicas (INEGI, 2015), los establecimientos existentes en la Cuenca son: 66 para el sector primario, de los cuales la mayoría son de pesca (49) y unas cuatro de piscicultura. Con respecto a su emplazamiento cercano a los ríos hay 34 unidades a menos de 100 metros de algún cauce. De estas unidades económicas, 32 son de pesca. Es recomendable identificar las unidades emplazadas muy cerca de tales cauces e implementar medidas para un manejo adecuado de residuos, con el propósito de reducir todo tipo de impacto. En el cuadro anexo se observa el desglose de unidades por actividad para el sector primario, así como el nombre de algunos de los establecimientos con mayor número de personas empleadas.

<table>
<thead>
<tr>
<th>Unidades económicas del sector primario</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad</td>
<td>UE</td>
<td>UE a 100 metros de ríos</td>
</tr>
<tr>
<td>Beneficios de productos agrícolas y otros</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Minería (de arenas, piedra caliza o mármol)</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Piscicultura</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Pesca</td>
<td>49</td>
<td>32</td>
</tr>
<tr>
<td>Subtotal</td>
<td>66</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Nombre del Establecimiento</th>
<th>Empleados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandinga, Alvarado</td>
<td>SOCIEDAD COOPERATIVAPESCADORES DE MANDINGA Y MATOZA, S.C.L.</td>
<td>31-50</td>
</tr>
<tr>
<td>La Laguna y Monte del Castillo, Medellín</td>
<td>SOCIEDAD COOPERATIVA LA FORTUNATA, S.C.L.</td>
<td>31-50</td>
</tr>
<tr>
<td>Antón Lizardo, Alvarado</td>
<td>SCPP ISLA DE MEDINA</td>
<td>31-50</td>
</tr>
</tbody>
</table>

En el mismo orden de ideas, con respecto a las actividades del sector secundario, las unidades económicas existentes en el DENUE son 2077, de las cuales la mayoría (368) son del giro elaboración de tortillas de maíz y molienda de nixtamal, seguidas por la panificación tradicional (362) y fabricación de productos de herrería (298). Por su emplazamiento cercano a los ríos existen 241 establecimientos, entre los giros más numerosos están alimentos (79), herrería (36) y fabricación de muebles (17). Resulta importante convocar a los establecimientos más cercanos a los ríos para su incorporación al PAMIC. En el cuadro anexo se observa el desglose de unidades por actividad para el sector secundario, así como el nombre de algunos de los establecimientos con mayor número de empleados.
Unidades económicas del sector secundario

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Unidades Económicas (UE)</th>
<th>UE a 100 metros de ríos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Captación Tratamiento y suministro de agua</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>Confección de prendas de vestir sobre medida</td>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>Elaboración de tortillas de maíz y molienda de nixtamal</td>
<td>368</td>
<td>42</td>
</tr>
<tr>
<td>Fabricación de muebles, excepto cocinas integrales, muelles modulares de baño y muelles de oficina y estantería</td>
<td>142</td>
<td>17</td>
</tr>
<tr>
<td>Fabricación de otros productos de cuero, piel y materiales sucedáneos</td>
<td>68</td>
<td>13</td>
</tr>
<tr>
<td>Fabricación de productos de herrería</td>
<td>298</td>
<td>36</td>
</tr>
<tr>
<td>Fabricación de productos de madera para la construcción</td>
<td>80</td>
<td>7</td>
</tr>
<tr>
<td>Impresión de formas continuas y otros impresos</td>
<td>92</td>
<td>5</td>
</tr>
<tr>
<td>Panificación tradicional</td>
<td>362</td>
<td>33</td>
</tr>
<tr>
<td>Purificación y embotellado de agua</td>
<td>55</td>
<td>4</td>
</tr>
<tr>
<td>Otras unidades económicas</td>
<td>555</td>
<td>79</td>
</tr>
<tr>
<td>Subtotal</td>
<td>2,077</td>
<td>241</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Nombre del Establecimiento</th>
<th>Empleados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Córdoba</td>
<td>DISTRIBUIDORA DE GRANOS ARCOS, S.A. DE C.V.</td>
<td>>251</td>
</tr>
<tr>
<td>Potrero Nuevo, Atoyac</td>
<td>FIDEICOMISO INGENIO EL POTRERO 80329</td>
<td>>251</td>
</tr>
<tr>
<td>Mata del Gallo, Paso del Macho</td>
<td>CENTRAL PROGRESO, S.A. DE C.V.</td>
<td>>251</td>
</tr>
<tr>
<td>Playas del Conchal, Alvarado</td>
<td>TRINITY INDUSTRIES DE MEXICO</td>
<td>>251</td>
</tr>
<tr>
<td>Paraje Nuevo, Amatlán de los Reyes</td>
<td>SYN-TEX MÉXICO</td>
<td>>251</td>
</tr>
<tr>
<td>Barranca Honda, fortín</td>
<td>AGUA BAMBA</td>
<td>>251</td>
</tr>
</tbody>
</table>

Finalmente, con respecto a las actividades del sector terciario, las unidades económicas existentes en el DENUE son 21,460 y por su emplazamiento cercano a los ríos existen 1,662
En el cuadro anexo se observa el nombre de algunos de los establecimientos del sector terciario con mayor número de empleados.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Unidades Económicas (UE)</th>
<th>UE a 100 metros de ríos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comercio y servicios</td>
<td>21,460</td>
<td>1,662</td>
</tr>
</tbody>
</table>

Establecimientos económicos del sector Terciario con mayor cantidad de personas ocupadas

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Nombre del Establecimiento</th>
<th>Actividad</th>
<th>Empleados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Córdoba</td>
<td>H. AYUTAMIENTO MUNICIPIO DE CORDOBA</td>
<td>Administración pública en general</td>
<td>>251</td>
</tr>
<tr>
<td>Córdoba</td>
<td>ARGO ALMACENADORA SA DE CV</td>
<td>Almacenes generales de depósito</td>
<td>>251</td>
</tr>
<tr>
<td>Córdoba</td>
<td>UNIDAD MEDICO FAMILIAR N° 61</td>
<td>Clínicas de consultorios médicos del sector público</td>
<td>>251</td>
</tr>
<tr>
<td>Boca del Río</td>
<td>LIVERPOOL VERACRUZ EL DORADO</td>
<td>Comercio al por menor en tiendas departamentales</td>
<td>>251</td>
</tr>
<tr>
<td>Antón Lizardo, Alvarado</td>
<td>HEROICA ESCUELA NAVAL MILITAR</td>
<td>Escuelas de educación superior del sector público</td>
<td>>251</td>
</tr>
<tr>
<td>Córdoba</td>
<td>HOSPITAL COVADONGA</td>
<td>Hospitales generales del sector privado</td>
<td>>251</td>
</tr>
<tr>
<td>Córdoba</td>
<td>IMSS</td>
<td>Hospitales generales del sector público</td>
<td>>251</td>
</tr>
<tr>
<td>Córdoba</td>
<td>HOSPITAL GENERAL DE CÓRDOBA YANGA</td>
<td>Hospitales generales del sector público</td>
<td>>251</td>
</tr>
<tr>
<td>Córdoba</td>
<td>TV CABLE DE ORIENTE, S.A. DE C.V.</td>
<td>Operadores de servicios de telecomunicaciones alámbricas</td>
<td>>251</td>
</tr>
<tr>
<td>Paraje Nuevo, Amatlán de los Reyes</td>
<td>SERVICIOS DE INTEGRACIÓN PARA PRODUCTOS BÁSICOS</td>
<td>Otros servicios profesionales, científicos y técnicos</td>
<td>>251</td>
</tr>
</tbody>
</table>
2.6 Inversiones y subsidios

El cuadro anexo muestra algunas de las principales inversiones y subsidios federales realizados en materia ambiental y agropecuaria en el 2015 (Tabla 2.2). Esta información no debe tomarse en términos absolutos ya que se obtuvo de un taller realizado en el marco del proyecto C6 en Junio de 2015 con actores de gobierno federal y estatal y la precisión que cada actor pudo aportar fue muy variable. Sin embargo si sirve para ubicar el tipo de acciones que se están promoviendo, las zonas donde se concentran y en algunos casos también la dimensión de la inversión.

Se destacó que por mucho la mayor inversión es ejercida es la de CONAGUA, esta dependencia ejerció $ 144,500,000.00 en dos programas (rehabilitación de una unidad de riego y el fondo para desastres naturales, este último enfocado al pago de estudios para obras de protección). El resto de las instituciones ejerció montos menores, sin embargo, las inversiones de SAGARPA y CONAFOR están muy subestimadas pero aún tomando en cuenta la falta de información no se consideró que estos montos pudieran acercarse al gasto ejercido por la CONAGUA en el territorio de la cuenca del Jamapa. En años anteriores (2013 y 2012) un programa relevante en la cuenca era el de cuencas prioritarias de CONAFOR pues llegó a ejercer casi 77 millones de pesos. Sin embargo en años recientes este programa ha visto reducido su presupuesto de forma sustancial.

Tabla 2.2. Inversiones identificadas por los principales actores del sector ambiental y agropecuario en la cuenca del río Jamapa durante el taller de Junio del 2015.

<table>
<thead>
<tr>
<th>INSTITUCIÓN</th>
<th>PROGRAMA</th>
<th>UBICACIÓN</th>
<th>MONTO</th>
<th>DESCRIPCIÓN Y OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAGARPA</td>
<td>PROGAN</td>
<td>MPIO. JAMAPA</td>
<td>$1,049,34</td>
<td>Impulsar la producción. Apoyo x viente $350 ganado bovino. 240 solicitudes este periodo. Hasta 3000 vientos. Ganado cárnicos. Compromiso de protección y cercado del predio, compromiso de sanidad de los animales, de la leche. Coeficientes de agostadero de acuerdo al municipio</td>
</tr>
<tr>
<td>PROCAFÉ</td>
<td></td>
<td></td>
<td></td>
<td>Impulso producción. Al café $1300/prod. (asesoría, insumos, plantas)</td>
</tr>
<tr>
<td>IMPULSO PRODUCCIÓN A CANA</td>
<td></td>
<td></td>
<td>$1500 x ha. Empezó 2014. Por ejemplo en el distrito 6 de Antigua son 3600 productores</td>
<td></td>
</tr>
<tr>
<td>CONANP</td>
<td>PROCODES</td>
<td>PNPO</td>
<td>$521,250</td>
<td>Monitoreo (lince), Proyectos alternativos energéticos (ollas), infraestructura para vigilancia, reforestación, construcción de estufas, brechas, estudios para el conocimiento del parque.</td>
</tr>
<tr>
<td>PROVICOM</td>
<td></td>
<td></td>
<td>$360,000</td>
<td>VIGILANCIA. Tala ilegal. En términos de contención las acciones han detenido la tendencia del problema.</td>
</tr>
<tr>
<td>PROCODES</td>
<td></td>
<td></td>
<td>$200,000</td>
<td>Prevención de incendios</td>
</tr>
<tr>
<td>CONTINGENCIA</td>
<td>COSTO</td>
<td>DESCRIPCIÓN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROCER</td>
<td>$350,000</td>
<td>Vigilancia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET</td>
<td>$32,500</td>
<td>protección y limpieza de playas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROCER</td>
<td>$600,000</td>
<td>monitoreo tortugas marinas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROCER</td>
<td>$500,000</td>
<td>Monitoreo arrecifes y especies de peces. Atención, captura y promoción del pez león (invasora).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROVICOM</td>
<td>$270,000</td>
<td>Vigilancia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONAFOR</td>
<td>PROGRAMA DE CUENCAS PRIORITARIAS</td>
<td>PNPO</td>
<td>$1,500,000</td>
<td>Empezó en 2012. Restauración de suelos, brechas, reforestación, vigilancia, sanidad, mantenimiento y cercado para servicios hidrológicos. Durante 5 años, 500Ha la fecha. En el 2014 el monto fue de 6 millones y en el 2013 de 56 millones.</td>
</tr>
<tr>
<td>Pet y PSA</td>
<td>Calahual co</td>
<td>Señalización, mantenimiento de camino, conservación de cobertura</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSA café</td>
<td>IXHUATLÁN DEL CAFÉ</td>
<td>$470,000</td>
<td>$280 x ha. 100 proyectos solicitados y aprueban 30 aprox. Es el tercer año: 200 Ha.</td>
<td></td>
</tr>
<tr>
<td>SEMARNAT</td>
<td>PET</td>
<td>$13,000,000</td>
<td>2013-2015 3 cuencas del estado, 40 Mill. emergencias. 2014 15 mill. proyectos productivos. 2015 apoyo de 9 mill. Reforestación con sp. maderables, cercos vivos, limpieza de caminos y brecha. Programas de acopio de residuos (llantas, pilas) y disposición adecuada de envases agroquímicos.</td>
<td></td>
</tr>
<tr>
<td>Otros programas y actividades</td>
<td>< 500 mil</td>
<td>UMAS extensivas de cedro; apoyo a grupos de mujeres pueblos indígenas, educación ambiental; Aprovechamientos (en mpio.Calcahulaco), plantaciones comerciales en Coscomatepec o aprovechamientos de macluar en la zona media para taninos.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONAGUA</td>
<td>Programa de rehabilitación de unidades de riego</td>
<td>$27 millones</td>
<td>Uso eficiente del agua, ahorro de energía y tecnificación</td>
<td></td>
</tr>
<tr>
<td>Fonden desastres naturales</td>
<td>Medellín</td>
<td>$117,5 millones</td>
<td>Estudios para obras de protección frente a inundaciones</td>
<td></td>
</tr>
<tr>
<td>FAV de gobierno del estado de Veracruz</td>
<td>CONSERVACIÓN DE BIODIV. EN CAFETALES</td>
<td>$450 mil</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DE LA MONTAÑA AL MAR</td>
<td>$480 mil</td>
<td>13 municipios. Ayuda a fortalecer capacidades en toma de decisiones para el manejo integrado desde un diagnóstico participativo</td>
<td></td>
</tr>
<tr>
<td>SEDEMA</td>
<td>Protección de incendios y manejo del fuego</td>
<td>$21,740</td>
<td>monto x sitio (4) brigadas</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>Proyecto C6</td>
<td>C6 PNPO PNPO</td>
<td>$430 mil</td>
<td>Brigadistas y operación</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C6 CEDRO S.C. CALCAH UALCO</td>
<td>$650 mil</td>
<td>Articulación social enfoque de cuenca</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conecta tierra A.C. 18 comunidades Unos 800 mil</td>
<td></td>
<td>enriquecimiento de cafetales</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C6 PRONATURA Huatusco</td>
<td>$799,500</td>
<td>Conservación aumento de biodiversidad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C6 Gruta Huatusco</td>
<td>600 mil</td>
<td>módulos agroecológicos en cafetales</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C6 Sierra madre Ixhuatlán</td>
<td>700 mil</td>
<td>manejo sustentable con especies nativas de café</td>
<td></td>
</tr>
</tbody>
</table>

Cabe mencionar que a nivel municipal el organismo operador de los municipios de Veracruz-Boca del Río-Medellín, el SAS, realizó inversiones de alrededor de los 4 millones durante el año 2013.

Además de los actores de gobierno hay muchos actores de la sociedad civil que han participado en la implementación de proyectos en la cuenca. Algunos de los que hemos logrado identificar y cuyas inversiones no superan el millón y medio de pesos fueron: Beta-biodiversidad, Pronatuva Veracruz (proyecto Coca-cola) y Consejo Civil Mexicano para la Silvicultura Sostenible A.c. (proyecto PEMEX) en la zona del Pico de Orizaba; Vida A.C., Conecta Tierra A.C., Cooperativa Gruta del río Jamapa, CEDRO S.C. y Productores de las zonas rurales de México estos últimos como parte del proyecto de C6 además de en casos con sus propios recursos.

El reto sería que tales inversiones sean incorporadas al PAMIC, para determinar su pertinencia, continuarlas e impulsar las que sean acordes a las propuestas de acción del PAMIC, en particular las que mayor impacten positivamente en el mantenimiento de los SAH.
2.7 Vinculación con instrumentos de gestión

El cuadro adjunto muestra los principales instrumentos de gestión exitentes que cubre parte de la cuenca o que impactan en ella por su cercanía y beneficios ambientales, incluye instrumentos federales, estatales y otros.

Aparte de las dos áreas naturales protegidas de ámbito federal, los parque naturales de Pico de Orizaba y el Sistema Arrecifal Veracruzano, en la cuenca del Jamapa encontramos varias áreas certificadas de ámbito federal (concentradas en la reserva ecológica natural cuenca alta del río Atoyac que comprende 446 ha.), 3 áreas naturales protegidas de ámbito estatal y 176 áreas privadas de conservación (APC) de ámbito estatal. Las áreas estales protegidas son: una pequeña fracción del municipio de Chocamán dentro del AEP Metlac-Río Blanco (que comprende un total de 31,790 ha.), la de Tembladeras-Laguna Olmeca (con un total de 346 ha.) y la de Arroyo Moreno (con un total de 249 ha.). Estas dos últimas se encuentran ubicadas en el municipio de Veracruz. Las 176 APC’s representan 930 ha, y entre estas destacan las de Barranca el Castillo (98 ha.) y Paso Iguana (90 ha.) en el municipio de Zentla y las de Palo Gacho (65 ha.) y el Boquerón (43 ha.) en el municipio de Tepatlaxco. En la cuenca del río Jamapa el único sitio RAMSAR que encontramos es igualmente el sistema arrecifal veracruzano. Asimismo encontramos un territorio de la cuenca con sitios prioritarios de diferente nivel de importancia (media, alta o extrema) ya sean sitios prioritarios Epicontinentales (SPECs) o terrestres (SPT). La Figura 2.23 muestra la localización de áreas que cuentan con dichos instrumentos de gestión.

Instrumentos Federales (Áreas Naturales Protegidas ANP)

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Fecha</th>
<th>Superficie en la Cuenca</th>
<th>% respecto total del área</th>
<th>% de cuenca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PN Pico de Orizaba</td>
<td>4 Enero de 1937</td>
<td>5,790</td>
<td>29,3</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>(de 19,750)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PN Sistema Arrecifal Veracruzano</td>
<td>Decreto del 24 Agosto 1992</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modificación: 29 de Noviembre de 2012</td>
<td>(de 65,516)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Áreas certificadas de ámbito federal: Reserva ecológica cuenca alta del río Atoyac</td>
<td></td>
<td>446</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Nombre</td>
<td>Fecha</td>
<td>Vinculación principal</td>
<td>Superficie en la Cuenca</td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------------------</td>
<td>--</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vinculación principal</td>
<td>Superficie en la Cuenca</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vinculación principal</td>
<td>Superficie en la Cuenca</td>
<td></td>
</tr>
<tr>
<td>Metlac-Río Blanco</td>
<td>18 Junio 2013</td>
<td>631 (de 31,790)</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Tembladeras-Laguna Olmeca</td>
<td>3 Octubre 2011 y modificación 10 Julio 2014</td>
<td>1,166 (de 1,375)</td>
<td>84.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Arroyo Moreno</td>
<td>25 Noviembre 1999</td>
<td>240 (de 249)</td>
<td>96.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Otros instrumentos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176 Áreas Privadas de Conservación</td>
<td></td>
<td>930</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Sitios Prioritarios Terrestres</td>
<td></td>
<td>119,303</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30.4</td>
<td></td>
</tr>
<tr>
<td>Sitios Prioritarios Epicontinentales</td>
<td></td>
<td>183,585 (de los cuales De los cuales 26,593 ha. prioridad extrema)</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>46.9</td>
<td></td>
</tr>
<tr>
<td>Sitios Prioritarios Marinos:</td>
<td></td>
<td>1604 (de 21,827)</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>* Humedales Costeros del centro de Veracruz</td>
<td></td>
<td>8000 (de 335,481)</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>* Sistema Laguna Alvarado</td>
<td></td>
<td></td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Figura 2.22. Áreas con instrumentos de gestión disponibles en la cuenca del río Jamapa. ANP = Área Natural Protegida, SPEC = Sitios Prioritarios Epi-Continentales, SPT= Sitios Prioritarios Terrestres. Elaboración propia con datos de CONANP, CONABIO, Gobierno del Estado de Veracruz e INEGI.
En este capítulo se identifica y describen las relaciones de oferta y demanda de servicios ambientales hidrológicos (SAH), particularmente provisión de agua superficial, en la cuenca del río Jamapa. Estas relaciones se establecen con base en el suministro de agua superficial tanto en cantidad como calidad y en la conectividad hídrica del territorio, esto permite priorizar el territorio con la finalidad de focalizar la implementación de acciones.

Este capítulo se desarrolla en las siguientes fases:

- Demanda de agua superficial por subcuenca.
- Zonificación de la provisión de servicios ambientales hidrológicos.
- Delimitación de las zonas de provisión de SAH.
- Priorización territorial para la implementación de acciones.
Esta capítulo tiene como objetivo identificar y resaltar las relaciones que existen entre las subcuenca con mayor demanda de agua superficial y las zonas que proveen este servicio ambiental, para esto se evaluó a cada subcuenca con respecto a los usos y volúmenes de agua, población y actividades productivas, y de esta manera asignar una calificación o categoría a cada unidad hidrográfica. Posteriormente, con base en la conectividad hidrográfica de las subcuenca se identifican y agrupan las subcuenca que tienen alguna relación hídrica de manera natural o artificial (trasvases) con la cuenca de mayor demanda.

3.1. Zonificación de la demanda de agua superficial en la cuenca

De acuerdo al registro público de derechos del agua (REPDA, 2014), en la cuenca se tienen identificados 8 diferentes usos con título de concesión para el aprovechamiento de agua superficial: acuícola, agrícola, industrial, pecuario, público-urbano, servicios, doméstico y diferentes usos. El uso agrícola es el de mayor volumen de demanda en la cuenca con más de 211 millones de m3/año concesionados, seguido del uso industrial con más de 14 millones de m3/año y en tercer lugar el uso público-urbano con más de 12 millones de m3/año. Los otros cinco usos representan en conjunto menos del 1% del volumen total concesionado en la cuenca. En la siguiente gráfica se muestra, por uso los volúmenes y el porcentaje que representa cada uno.

![Figura 3.1. Volumenes concesionados por uso en la cuenca del río Jamapa.](image-url)
En esta etapa se asigna una categoría a cada subcuenca con respecto a la demanda “global” de agua superficial, para determinar se evaluó las siguientes características de cada subcuenca:

- Usos y volumen de agua concesionado
- Población
- Superficie con uso agropecuario
- Producción de energía hidroeléctrica (uso no consuntivo)

Para facilitar el manejo, interpretación y presentación de los resultados y datos utilizados en la metodología propuesta, los volúmenes y usos del agua concesionados en el registro público de derechos del agua (REPDA) se agruparon como se muestra en la siguiente tabla.

<table>
<thead>
<tr>
<th>Demanda para:</th>
<th>Usos de acuerdo al REPDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso agropecuario</td>
<td>Volumen para uso acuícola + volumen para uso agrícola + volumen para uso pecuario</td>
</tr>
<tr>
<td>Uso público y de servicios</td>
<td>Volumen para uso doméstico + volumen para uso público urbano + volumen para uso industrial + volumen para uso de servicios</td>
</tr>
<tr>
<td>Uso no consuntivo</td>
<td>Volumen concesionado para la generación de energía hidroeléctrica</td>
</tr>
</tbody>
</table>

Con la finalidad de asignar algún grado de demanda, considerando la heterogeneidad de las subcuenças con respecto al uso y volumen de agua, población y actividades productivas. Se estimó la demanda para los tres usos mencionados en la tabla anterior, para posteriormente estimar una demanda “global”, que corresponde a la integración de la demanda para estos tres usos.
Figura 3.2.- Diagrama conceptual para la estimación de la demanda global de agua superficial

Para la estimación de la demanda “global” para cada subcuenca se realizó una integración de los tres usos mencionados, mediante una suma lineal de los valores estandarizados de la demanda para cada uso. Como resultado de esta integración, solo la subcuenca con identificador Jam38 entro en la categoría de muy alta demanda, mientras que en la categoría de alta demanda se asignó a dos subcuenca (Jam24 y Jam33).

Figura 3.3.- Demanda global de agua superficial en las subcuenca del río Jamapa.

En la siguiente gráfica se puede observar el volumen relativo en porcentaje de agua superficial concesionado para cada subcuenca, con respecto al volumen para cada uso concesionado en toda la cuenca.
Figura 3.4.- Proporción de volúmenes concesionados en cada subcuenca por tipo de uso de acuerdo al REPDA
b) Demanda para uso agropecuario

La demanda para uso agropecuario considera los volúmenes concesionados para uso acuícola, agrícola, forestal y pecuario, registrados en el REPDA. Para la estimación de la demanda se consideraron dos criterios: los volúmenes totales concesionados en cada subcuenca y la superficie total con uso de suelo agropecuario ver figura.

Figura 3.5.- Diagrama conceptual para la estimación de la demanda de agua superficial por uso agropecuario.

De las 38 subcuencas delimitadas para la cuenca del río Jamapa, una (la Jam 33) entró en la categoría de muy alta demanda para este uso (ver mapa).

Figura 3.6.- Demanda de agua superficial para uso agropecuario.
b) Demanda para uso público y de servicios

En el marco de los PAMIC la demanda para uso doméstico y servicios considera los volúmenes concesionados para los usos; doméstico, público urbano, servicios e industrial (excepto producción de energía hidroeléctrica), según el REPDA, para cada subcuenca. Como segundo criterio se consideró la población total tanto rural como urbana en cada subcuenca.

![Diagrama conceptual para la estimación de la demanda de agua superficial por uso público y de servicios.](Figura_3.7)

Como resultados del análisis de la demanda para uso público urbano, una cuenca (Jam 7) resultaron en la categoría de muy alta prioridad.

![Demanda de agua superficial para uso público y de servicios](Figura_3.8)

Figura 3.8.- Demanda de agua superficial para uso público y de servicios
c) Demanda de agua superficial para uso no consuntivo

Esta demanda corresponde al volumen total concesionado para la generación de energía. En la cuenca del río Jamapa solo se identificó una subcuenca (Jam38) con concesión de más de 366 millones de m³/año de agua superficial destinados a la generación de energía eléctrica, dicho aprovechamiento corresponde a la termoeléctrica Dos Bocas ubicado en municipio de Medellín.

Figura 3.9.- Demanda de agua superficial para uso no consuntivo
3.2. Zonificación de la oferta o provisión de servicios ambientales hidrológicos

Con el propósito de evaluar en la cuenca la provisión de agua superficial y la pérdida potencial del de suelo, fue utilizado el programa InVEST (*Integrated valuation of ecosystem services and tradeoffs*), el cual es un sistema computacional modular, gratuito y de código abierto disponible en www.naturalcapitalproject.org. Este sistema está compuesto por 18 herramientas desarrolladas para modelar servicios ambientales, tanto en paisajes terrestres como marinos (*Sharp, R., et al., 2016*). Los modelos implementados en InVEST son espacialmente explícitos, esto implica que utilizan mapas como fuentes de información y también producen mapas como resultado.

a) Zonas potenciales proveedoras de agua superficial

En particular, para determinar la provisión de agua superficial fue aplicado uno de sus módulos, inicialmente desarrollado para estimar la producción de energía hidroeléctrica a partir de embalses, el cual se denomina “Cosecha hídrica” (*Water Yield*). Entre las funciones de este módulo se encuentra la de estimar la cantidad promedio anual de agua que es producida por la cuenca, para esto realiza el cálculo de la relación precipitación-escurrimiento de acuerdo a la curva de Budyko (*Fu, 1981; Zhang et al. 2004*), modela así la contribución potencial de agua desde cada zona del paisaje. Las variables requeridas por este modelo son: profundidad de restricción para el crecimiento de raíces, precipitación media anual, fracción de agua contenida en el suelo disponible para las plantas, promedio anual de evapotranspiración de referencia y coeficientes asociados a la vegetación. Los resultados espacialmente explícitos sobre la producción relativa de agua sirven para identificar áreas con diferentes intensidades en la cantidad promedio anual de agua producida en la cuenca y también permiten identificar cómo los cambios en el paisaje afectan o alteran tal contribución. Las unidades en que se reportan los mapas resultantes son mm por pixel por año, así como mm por cuenca por año. Para mayor información sobre las aplicaciones de este módulo, el lector puede consultar a Torrado y colaboradores (2014), así como a Hamel y Guswa (2015).

La capa generada por el modelo de Water Yield a la que llamaremos de Escorrentía se relacionó con la de exportación de sedimentos generada por el modelo SDR igualmente de INVEST. Con esta relación lo que se buscó fue generar propiamente la capa de provisión de agua (fig 3.10.), esta incluye no sólo la cantidad como lo representa el Water Yield sino también una dimensión de calidad del agua. Se busca identificar zonas no sólo que tengan alto escurrimiento sino también aquellas que además tengan baja exportación de sedimentos.
Figura 3.10.- Zonas potenciales proveedoras de agua superficial a partir del modelo Water Yield de INVEST en la cuenca del Jamapa (Fuente: Elaboración propia con datos de INEGI e INECC).
Los resultados del modelo de "cosecha hídrica" indican la provisión de agua superficial, permiten hacer comparaciones sobre la distribución del agua en el paisaje. Los valores de mayor provisión de agua superficial están localizados en la parte inferior de la Cuenca Alta (figura 3.10), esta zona corresponde a la transición del clima templado húmedo al semicalido húmedo; está cubierta por bosque mesófilo de montaña, vegetación secundaria arbórea de bosque mesófilo de montaña y vegetación secundaria arbustiva de bosque mesófilo de montaña. El uso de suelo principal es pastizal cultivado y pastizal inducido.

Al cuantificar la provisión de agua superficial acotada a límite de cada subcuenca, resultan dentro de la clase de mayor provisión de este servicio ambiental las subcuencas: Jam3 y Jam34, ubicadas a lo largo de las cuencas media y baja y en la cuenca alta, respectivamente (figura 3.11). En contraste, sobre todo en las cuenca media se ubican subcuencas como Jam6, Jam9, Jam12, Jam16 o Jam20, entre otras, pertenecientes a la categoría de menor provisión de agua superficial. En general, la figura 3.11 proporciona una evaluación de la importancia de las subcuencas en la provisión anual de agua, pero no toma en cuenta la demanda o la cantidad requerida por los usuarios cuenca abajo.
Figura 3.11. Provisión de agua por subcuenca a partir del modelo Water Yield de INVEST.
(Fuente: Elaboración propia con datos de INEGI e INECC).
b) Zonas potenciales de susceptibilidad a la erosión del suelo

Para determinar la pérdida potencial del suelo fue usado el módulo de InVEST denominado "Liberación de Sedimentos" (*Sediment Delivery Ratio Model*), el cual estima la capacidad que tiene una parcela del terreno para retener sus partículas, una vez liberadas estas partículas sólidas se convierten en sedimentos que están sujetos a la acción de agentes externos que los transportan a otras áreas. De esta forma, las áreas que presentan alta pérdida del suelo, también son potencialmente exportadoras de sedimentos. En particular fue usada la Revisión de la Ecuación Universal sobre Pérdida de Suelos (RUSLE, Renard, *et al.*, 1997), la cual utiliza los siguientes insumos para su cálculo: erosividad de la lluvia (factor R de RUSLE), erodabilidad del suelo (factor K de RUSLE), Modelo Digital de Elevaciones (DEM), vegetación y uso de suelo, así como características de la vegetación y el uso del suelo. Las unidades en que se reportan los mapas resultantes son toneladas por pixel por año, así como toneladas por cuenca por año. Para mayor información sobre las aplicaciones de este módulo, el lector puede consultar a Torrado y colaboradores (2014), así como a Hamel y colaboradores (2015).

Las áreas con mayor susceptibilidad a la erosión se concentran al sur de la Cuenca Alta, en la parte superior de la Cuenca Media, en la zona de la conocida como sierra del gallego, al norte de la ciudad de Córdoba (figura 3.12).
Figura 3.12.- Zonas potenciales de susceptibilidad a la erosión a partir del modelo SDR de INVEST.
(Fuente: Elaboración propia con datos de INEGI).
Al delimitar por subcuenca los valores de susceptibilidad a la erosión del suelo resalta con la categoría de muy baja pérdida potencial del suelo varias subcuencas de la cuenca media y baja, concretamente las subcuencas 6,16,17,21,22,23,29 y 38. Se infiere entonces que esta región presenta la mayor retención de suelos (figura 3.13). Por otra parte, la categoría de muy alta pérdida potencial del suelo está integrada por las subcuencas Jam34 y Jam25M, ubicadas en la parte cuenca alta. Estas subcuencas presentan muy baja eficiencia en la retención de suelos (figura 3.13).
Figura 3.13. Servicios de disminución de susceptibilidad a la erosión por subcuenca a partir del modelo SDR de INVEST.
(Fuente: Elaboración propia con datos de INEGI e INECC).
c) Zonas potenciales de provisión de Servicio Ambiental Hidrológico (SAH)

Habiendo generado los mapas de escurrimiento superficial (Water Yield) y de susceptibilidad a la erosión (USLE; Fig. 3.12) se generó un mapa que llamamos de provisión de servicio ambiental hidrológico que integra a ambas con el fin de identificar esas zonas de mayor escurrimiento pero al mismo tiempo también con baja susceptibilidad a la erosión, es decir aquellas que proveen agua en cantidad y calidad. En la Figura 3.14. las zonas azul oscuro son aquellas de muy alta provisión de SAH, es decir con una alta provisión de agua superficial y una baja susceptibilidad a la erosión. Por el contrario las zonas verde claro son aquellas más susceptibles a la erosión y con menores valores de provisión de agua superficial.

3.3. Priorización territorial para la focalización de intervención en la cuenca

Uno de los objetivos centrales de los Planes de Acción para el Manejo Integrado de Cuencas (PAMIC) es poder contar con una herramienta que permita tener criterios en la toma de decisiones en la implementación de acciones en la cuenca, esto permite focalizar los esfuerzos y recursos permitiendo una mejor costo efectividad de las actividades desarrolladas en la cuenca. En este sentido, la parte novedosa que la metodología de los PAMIC en materia territorial, es el desarrollo de criterios espacialmente explicitos con sustento tecnico y científico robusto, que permitan priorizar el territorio con base en sus características, climáticas, biofísicas y sociales, para la implementación de acciones con enfoques diferentes: conservación, restauración (y/o rehabilitación) y adecuación de prácticas productivas.

Esta priorización se realizó considerando cuatro criterios generales:

- Grado de provisión de servicios ambiental hidrológico (Fig 3.14)
- Vegetación y uso de suelo
- Cambio en las condiciones bioclimáticas bajo escenarios de cambio climático
- Relación hídrica (zona de provisión) con la subcuenca de mayor demanda

a) Priorización territorial para actividades de conservación

En esta etapa se identifican aquellos sitios cuyas características los hacen idóneos para la implementación de acciones enfocadas a la conservación de la funcionalidad del territorio y los elementos que en esta intervienen. Se calificaron con muy alta prioridad aquellos sitios que cumplen con los siguientes criterios: sitios con muy alta provisión de servicios ambientales hidrológico (esto es muy alta provisión agua superficial y baja susceptibilidad a la erosión), con vegetación natural, dónde las proyecciones de tres modelos de circulación general (MCG) indican cambios en las condiciones bioclimáticas y que tengan una relación hídrica con la subcuenca de mayor demanda. Como veíamos en este caso la subcuenca de mayor demanda es Jam 38.

Figura 3.15.- Diagrama conceptual para la identificación de sitios prioritarios para la implementación de acciones enfocadas a la conservación.
Figura 3.16.- Sitios prioritarios para la implementación de acciones de conservación en la cuenca del río Jamapa.
Los sitios coloreados en verde claro y oscuro representan lugares donde existen las condiciones para un buen suministro de servicios ambientales hidrológico, se proyectan cambios en las condiciones bioclimáticas por efecto del cambio climático y tienen alguna relación hídrica con las zonas baja, la de mayor demanda. En estos sitios se recomienda implementar acciones como:

- Apoyo a la conservación y mejoramiento del cafetal de sombra con enfoque agroecológico
- Conservación de bosques en ANPs y APCs.
- Conservación humedales
- Agroturismo

b) Priorización territorial para actividades de restauración

En esta etapa se identifican aquellos sitios cuyas características los hacen idóneos para la implementación de acciones enfocadas a la restauración y rehabilitación de la funcionalidad del territorio con vegetación natural. Se calificaron con muy alta prioridad aquellos sitios que cumplen con los siguientes criterios: sitios con media y baja provisión de servicios ambientales, con vegetación natural, donde las proyecciones de tres modelos de circulación general (MCG) indican cambios en las condiciones bioclimáticas y que tengan una relación hídrica con la subcuenca de mayor demanda.

Figura 3.17.- Diagrama conceptual para la identificación de sitios prioritarios para la implementación de acciones enfocadas a la restauración.
Figura 3.18.- Sitios prioritarios para la implementación de acciones de restauración y rehabilitación en la cuenca del río Jamapa.
Los sitios señalados en color verde claro y verde oscuro corresponden a aquellos que tienen necesidades de restauración para incrementar la provisión de servicios ambientales, tanto en cantidad como en calidad. En estos sitios se recomienda implementar acciones como:

- Creación o fortalecimiento de viveros con especies nativas forestales y con frutales para la reforestación
- Rehabilitación y conservación de espacios riparios
- Reforestación con especies nativas
- Reforestación de dunas costeras
- Agroturismo
- Obras de conservación de suelos y abono: terrazas, zanjas de infiltración, cultivos de cobertera, jagüeyes, tinas, barreras vivas y muertas
- Mantenimiento de la reforestación para lograr alta supervivencia (chapear, fertilizar, podar)
- Mejoramiento de actividades cafetaleras

c) **Priorización territorial para la adecuación de prácticas productivas**

En esta etapa se identifican aquellos sitios donde actualmente se llevan a cabo actividades productivas, que tienen un impacto (tanto positivo como negativo) en la provisión del servicio ambiental evaluado. Se calificaron con muy alta prioridad aquellos sitios que cumplen con los siguientes criterios: sitios con media y baja provisión de servicios ambientales, con uso de suelo agropecuario, donde las proyecciones de tres modelos de circulación general (MCG) indican cambios en las condiciones.

![Diagrama conceptual para la identificación de sitios prioritarios para la implementación de acciones para la adecuación de prácticas productivas.](image-url)
Figura 3.20.- Sitios prioritarios para la adecuación de prácticas productivas en la cuenca del río Jamapa.
Los sitios señalados en color verde claro y verde oscuro corresponden a aquellos que tienen necesidades de adecuación de prácticas productivas para incrementar la provisión de servicios ambientales, tanto en cantidad como en calidad. En estos sitios se recomienda implementar acciones como:

- Prácticas agropecuarias adecuadas: agroforestales, siembra a curvas de nivel, intensificación ganadera, permacultura, parcelas forrajeras (ensilado).
- Difusión de prácticas agrosilvopastoriles (dar a conocer experiencias ya en marcha).
Este capítulo está vinculado con el tercer objetivo particular de los PAMIC: Proponer y focalizar las acciones de intervención que promuevan la conservación, la restauración y el aprovechamiento sustentable de los recursos en las subcuencas de oferta de SAH. Al respecto, los PAMIC fueron conceptualizados con un enfoque dinámico y participativo en la planificación de las acciones en la cuenca, combinando datos científicos básicos y una fuerte participación de los actores principales. Aunque en el proceso de formulación y socialización de los PAMIC se realizan diversos talleres con actores clave, es en el desarrollo de este capítulo donde se aborda, con cierto detalle, tal participación de actores, así como también, el impacto positivo de sus aportaciones.
Contando con los mapas de provisión de agua y susceptibilidad a la erosión, presentados en el capítulo anterior, los días 13 y 15 de julio del 2016, en las ciudades de Boca del río y Huatusco, respectivamente, se realizaron los talleres de identificación y caracterización de las actividades que conservan y detonan los servicios ambientales de la cuenca. Se realizaron dos talleres con el fin de favorecer la participación ampliada de los actores que inciden tanto en la dinámica de la parte media-baja de la cuenca como de la media-alta.

Los talleres permitieron identificar, ubicar espacialmente y caracterizar las actividades, tanto las que ya se llevan a cabo, como las que serían deseables, para lograr su implementación y priorización estratégica en el marco del PAMIC de la cuenca.

En el primer taller participaron 25 personas de la zona media-baja, entre otros:
 a) Representantes del sector productivo, en especial de la actividad pesquera;
 b) Instituciones públicas como la Comisión Federal de Electricidad (CFE), la Comisión Nacional del Agua (CONAGUA) y del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) así como los organismos operadores del agua (tanto el sistema metropolitano SAS como el de Boca del río) y la dirección de ecología del municipio de Boca del río;
 c) Académicos y académicas del Colegio de Posgraduados (COLPOS) campus Córdoba, del Instituto de Ciencias Marinas y Pesquerías Región Veracruz de la Universidad Veracruzana (U.V.) y del Instituto Nacional de Ecología (INECOL);
 d) Organizaciones de la sociedad civil (OSC) como Amigos del volcán al mar, la Alianza de educadores ambientales, Costas Veracruzanast sustentables A.C. y el Consejo de cuenca tuxpan al Jamapa A.C.

En el segundo taller reunión a unas 45 personas de la zona media-alta, entre otros:
 a) Representantes del sector productivo, sobre todo de la actividad cafetalera que contó con una muy nutrida participación, así como la actividad ganaderas y forestal de pequeña escala (cooperativa las Cañadas) y las actividades ecoturísticas (Cooperativa gruta del río Jamapa A.C.);
 b) Instituciones públicas como la Comisión Nacional del Agua (CONAGUA) y la Comisión Nacional de Áreas Naturales Protegidas (CONANP) a través del Parque Nacional Pico de Orizaba, así como representantes del organismo operador de la ciudad de Córdoba (Hidrosistema);
c) Académicos y académicas de la Universidad Autónoma de Chapingo, del Sistema Enseñanza Abierta (SEA)-Sociología de la U.V. y del Instituto Tecnológico de Huatusco;
d) OSC´s como Productores de Alimentos para las zonas rurales de México A.C., Senderos y Encuentros para un Desarrollo Autónomo Sustentable (SENDAS) A.C., el Consejo de cuenca tuxpan al Jamapa A.C., la Unidad de Manejo ambiental (U.M.A.) “Mountain Forest”, la red de agricultores urbanos, la Coordinadora de Pueblos en Defensa del Río Atoyac, la Fundación Kolping A.C., Vinculación y Desarrollo Agroecologico en café (VIDA) A.C., la Coordinadora de organizaciones cafetaleras de Huatusco A.C. y la Consultora Para El Desarrollo Rural Y Ordenamiento Ambiental (CEDRO S.A. de C.V.).

Ambos talleres utilizaron la misma metodología. Desde la convocatoria e invitación de las personas se buscó la participación de la diversidad de intereses, actores, instituciones y niveles que convergen en el territorio de la cuenca. Se utilizaron estrategias para favorecer la participación como fue la utilización de mesas de trabajo de unas 10 personas por mesa para fomentar la intervención de tod@s alrededor de los mapas de debate. Después de la identificación de actividades sobre los mapas, los actores caracterizaron las actividades, analizando por ejemplo, dónde es viable promoverlas, quien(es) pueden apoyar en su implementación, qué factores favorecen o impiden su desarrollo o cuál es su costo. Ya con dichas actividades identificadas y caracterizadas, se realizó una dinámica de priorización de dichas actividades en 2 escenarios de inversión: presupuesto holgado y presupuesto “recortado”. En el primer ejercicio de priorización se le dotó a cada participante un presupuesto holgado y se pidió que de forma individual asignara un monto a cada una de las actividades previamente identificadas y caracterizadas. Los actores asignaron dichos montos en función de la importancia relativa que cada actividad tuviera para la mejorar la salud de la cuenca. Después de haber puesto en común en la mesa de trabajo dichas asignaciones se le planteó a la mesa que había una reducción al 20% del presupuesto original y que entonces decidieran, de manera colectiva, a qué se debería destinar el presupuesto.

Las memorias de los talleres pueden consultarse como anexo a este documento en el siguiente LINK.
4.1. Propuestas prioritarias de provisión de SAH

El principal resultado de los talleres es la lista priorizada de qué actividades realizar para conservar y detonar los dos servicios ambientales hidrológicos que la cuenca del Jamapa provee. A continuación encontrará las actividades priorizadas en las diferentes zonas de la cuenca:

a) Parte media-baja de la cuenca:

En la siguiente tabla 4.1 se enlistan las 5 actividades principales que las dos mesas de trabajo que actores Boca del Río identificaron como prioritarias a la hora de enfrentar un escenario de presupuesto “recortado”. Se incluye igualmente la importancia relativa (en porcentaje respecto del presupuesto total) de cada actividad para cada una de las mesas,

Tabla 4.1. Principales actividades identificadas con un presupuesto reducido en la parte media-baja de la cuenca del Jamapa.

<table>
<thead>
<tr>
<th>Mesa 1</th>
<th>Mesa 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistemas de tratamiento de aguas residuales</td>
<td>25</td>
</tr>
<tr>
<td>Educación ambiental</td>
<td>25</td>
</tr>
<tr>
<td>Reforestación con especies nativas</td>
<td>20</td>
</tr>
<tr>
<td>Reforestación de dunas costeras</td>
<td>17,5</td>
</tr>
<tr>
<td>Conservación de humedales</td>
<td>12,5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En el conjunto de las dos mesas las actividades que identificaron como más prioritarias fueron:

- La educación ambiental que incluya un desarrollo de capacidades de la sociedad en torno a la visión de cuenca
- La reforestación con especies nativas, en especial de las zonas riparias
- El desarrollo de sistemas de tratamiento de aguas residuales
- La fiscalización de descargas incluyendo su identificación y ubicación, un seguimiento periódico de las mismas y en su caso proceder con sanciones todo ello con el fin de disminuir la contaminación.
b) Parte media-alta de la cuenca:

En el siguiente cuadro se enlistan las 5 actividades principales que cada una de las tres mesas de trabajo de Huatusco identificaron como prioritarias a la hora de enfrentar un escenario de presupuesto “recortado”. Se incluye igualmente la importancia relativa (en porcentaje respecto del presupuesto total) de cada actividad para cada una de las mesas.

Tabla 4.2. Principales actividades identificadas con un presupuesto reducido en las 3 mesas de la parte media-alta de la cuenca del Jamapa con su importancia relativa.

<table>
<thead>
<tr>
<th>Mesa 1</th>
<th>Mesa 2</th>
<th>Mesa 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reforestación con especies apropiadas de bosque de niebla (colectivas en espacios públicos)</td>
<td>12,5</td>
<td>Apoyo a la conservación del cafetal de sombra con enfoque agroecológico (se fusionó con las actividades 4.5 y 4.7)</td>
</tr>
<tr>
<td>Mantenimiento de la reforestación para lograr alta supervivencia (chapear, fertilizar, podar)</td>
<td>12,5</td>
<td>Tratamiento de aguas residuales (urbanas y agroindustriales)</td>
</tr>
<tr>
<td>Concientización: educación ambiental con enfoque de cuenca y educación ciudadana</td>
<td>10</td>
<td>Difusión de prácticas agrosilvopastoriles (dar a conocer experiencias ya en marcha)</td>
</tr>
<tr>
<td>Promover ecotecnias que disminuyan presión sobre el bosque: Centros de capacitación para la sustentabilidad</td>
<td>7,5</td>
<td>Conservación de bosques en ANPs y APCs.</td>
</tr>
<tr>
<td>11 actividades con el 5% del presupuesto</td>
<td></td>
<td>Prácticas agropecuarias adecuadas: agroforestales, siembra a curvas de nivel, intensificación ganadera, permacultura, parcelas forrajeras (ensilado)</td>
</tr>
</tbody>
</table>
En el conjunto de las tres mesas las actividades que identificaron como más prioritarias fueron:

- La educación ambiental y promoción de ecotecnias.
- El apoyo a la conservación del cafetal de sombra con enfoque agroceológico,
- Reforestación con especies apropiadas de bosque de niebla (privilegiar reforestaciones colectivas en espacio públicos) y el mantenimiento de las mismas para lograr una alta supervivencia.

Al comparar las tablas de las tres mesas salta a la vista que se propusieron las mismas actividades nombrándolas de distintas maneras, de forma tal que en realidad el número de acciones se reduce significativamente si se homologa la forma en que fueron denominadas. En el siguiente cuadro se enlistan las actividades agrupándolas hasta donde fue posible determinar que se trata de la misma actividad, los montos señalados corresponden a la suma de lo asignado en cada mesa a las actividades englobadas bajo un nombre “estandarizado”, cuyas claves se enlistan en la columna de la derecha.

Los participantes en este taller son en su mayoría habitantes de la zona cafetalera de Huatusco-Córdoba o son colaboradores o integrantes de instituciones de la zona (CRUO, las Cañadas, organizaciones cafetaleras, etc.), de la zona de montaña alta en torno al Pico de Orizaba asistieron representantes de la CONANP. En conjunto las preocupaciones y propuestas expresan una visión focalizada en la zona alta y media de la cuenca, siendo notoria la ausencia de actividades identificadas para la zona baja de la cuenca.

Las actividades que fueron más altamente priorizadas fueron las relacionadas con la conservación y restauración de suelos, más que las orientadas hacia la promoción del cafetal de sombra, cuyas actividades asociadas quedaron hasta el octavo lugar de prioridad. Este hecho que ilustra que los participantes – cafetaleros en gran parte- enfocaron sus propuestas pensando en los servicios ambientales de la cuenca y no desde su problemática productiva, siendo este un buen inicio para la construcción de consensos hacia un Plan de acción de manejo integral de cuenca.
4.2. Focalizando las acciones principales

Con base en los ejercicios de priorización descritos en el capítulo anterior junto con la información obtenida en los talleres, se identificaron los sitios donde la implementación de acciones tendrá una mejor retribución ambiental, en términos de servicios ambientales hidrológicos.

Figura 4.1. Focalización de actividades de conservación, restauración y adecuación de prácticas en la cuenca del río Jamapa.

Tabla 4.3. Las diez actividades a promover en al cuenca y su priorización territorial

<table>
<thead>
<tr>
<th>Actividades</th>
<th>Priorización territorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concientización: educación ambiental con enfoque de cuenca y educación ciudadana</td>
<td>Toda la cuenca</td>
</tr>
<tr>
<td>Sistemas de tratamiento de aguas residuales (urbanas y agroindustriales)</td>
<td>Toda la cuenca, sobre todo zonas urbanas</td>
</tr>
<tr>
<td>Apoyo para el mejoramiento de actividades cafetaleras</td>
<td>Conservación</td>
</tr>
<tr>
<td>Conservación de bosques en ANPs y APCs</td>
<td>Conservación</td>
</tr>
<tr>
<td>Obras de conservación de suelos y abono: terrazas, zanjas de infiltración, cultivos de cobertera, jagüeyes, tinás, barreras vivas y muertas</td>
<td>Restauración</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Difusión de prácticas agrosilvopastoriles (dar a conocer experiencias ya en marcha)</td>
<td>Adecuación</td>
</tr>
<tr>
<td>Creación de viveros con especies nativas forestales y con frutales para la reforestación</td>
<td>Restauración</td>
</tr>
<tr>
<td>Reforestación de dunas costeras</td>
<td>Restauración</td>
</tr>
<tr>
<td>Reforestación (arborización) de zonas riparias.</td>
<td>Restauración</td>
</tr>
<tr>
<td>Reforestación con especies nativas</td>
<td>Restauración</td>
</tr>
</tbody>
</table>
4.3. Caracterización de principales acciones

En esta sección se presenta la caracterización de cuatro de las principales actividades identificadas durante ambos talleres. Se hizo este ejercicio para todas las actividades en los 2 talleres. Si se desea conocer alguna otra actividad en detalle favor consultar las memorias de los talleres de Jamapa.

a) Ejemplo de Actividad priorizada: EDUCACIÓN AMBIENTAL

¿QUÉ?

Actividad identificada en ambas mesas del taller de Boca del río así como en dos de las tres mesas de la parte media-alta. En algunas mesas se identificó que temáticamente debería centrarse en “el ciclo del agua”, en otras la perspectiva de cuenca y otras en fortalecer las capacidades de colaboración en red para la incidencia en políticas públicas y orientar financiamientos para el manejo de cuenca.

En el taller de Huatusco se incluyó además la promoción de ecotecnias en este proceso de capacitación.

¿DÓNDE?

Los actores plantean realizar esta actividad en alianza con el sector educativo, en especial en comunidades rurales (escuelas de nivel básico). En la cuenca existe el antecedente del proyecto del volcán al mar que trabajó en 28 municipios a lo largo de la cuenca. Actores de los municipios de la parte alta coinciden en la necesidad de incluir a Fortín, Huatusco y Córdoba en estos procesos de fortalecimiento de capacidades.

¿CUÁNTO y CON QUIÉNES?

Basado en esta última experiencia se planteó que el costo aproximada de esta acción podría acercarse a los dos millones y medio para esos 28 municipios. Otras mesas coincidieron bastante con este presupuesto pues planteaban un costo anual de unos 150 mil pesos por año por municipio. Adicionalmente si se promueven ecotecnias el costos aumentaría. El costo de un filtro es de aproximadamente 900 pesos mientras que las estufas de leña ahorrados cuestan entre 1500 y 2200 pesos. Como posibles fuente de financiamiento se identificó a:

- Dependencias federales, estatales y municipales en especial SEP-SEV y CECADESU
- Empresarios / Industria
- Banamex
- Otras: SAS, FAV, CONAGUA, CONAFOR, API
- Fundación Azteca
- Fundación Gonzalo Río Arronte
- Fundación Slim
- Conanp, promotores para ed. Amb.
- Alianza de educadores ambientales para el Golfo de México y Caribe, A.C.
- Consorcio de instituciones de investigación marina del gran ecosistema marino del golfo de méxico (CIIMarGOM)
RETOS

Uno de los principales factores que pueden FAVORECER la implementación de esta actividad es la existencia de una creciente valorización de los problemas acarreados por el cambio climático y ello es una atribución de los organismos reguladores de la gestión del agua. Igualmente existe un plan de educación ambiental implementado en el sector educativo.

Los principales factores que IMPIDEN la implementación tienen que ver con que muchas veces privan intereses políticos partidistas y personales, los tiempos electorales, a la hora de asignar recursos. En general se identifica una falta de voluntad política. Asimismo se identificó como débil la visión de cuenca tanto del gobierno como de la sociedad así como una falta de recursos económicos y humanos.

Con el fin de superar esos factores que impiden la implementación se identificaron algunos elementos que contribuirían a superar estos obstáculos:

- Presentación de programas para desarrollar propuestas
- Convenios
- Aprovechar la creciente preocupación sobre los desastres naturales ligados al mal manejo de las cuencas.
- Informar y concientizar a la ciudadanía.
- Empoderar a la ciudadanía para vigilar, e incidir en política públicas que incorporen visión de cuenca.
- Alianzas con grupos interesados en promover el cuidado del medio ambiente
b) **SISTEMAS DE TRATAMIENTO DE AGUAS RESIDUALES**

¿QUÉ y DÓNDE?

Promover sistemas de tratamiento de aguas residuales para aguas residuales de origen urbano y/o de origen agroindustrial, especialmente en centros de población como Córdoba y Huatusco en la parte media-alta de la cuenca. Esta actividad fue identificada en al menos una mesa en cada taller.

¿CUántO y CON QUIÉNES?

Las plantas de tratamiento de gran tamaño, para ciudades como Córdoba pueden costar entre $150 a $300 millones de pesos. La construcción de una planta de tratamiento de mediano tamaño (capacidad para tratar 5 litros por segundo), para zonas urbanas como Huatusco o Coscomatepec, cuestan unos $9 millones. No hay que olvidar que a estos costos de construcción hay que incorporarle los costos de operación, unos 16 mil pesos por cada mil litros según las participantes. Como posibles fuentes de financiamiento se identificó a:

- PEF (CDD) Cámaras de diputados, Gobierno Federal a través del municipio
- SHCP, el sector empresarial
- Gobierno de estado

Asimismo se identificó a varios socios potenciales con quienes contar para promover esta actividad. Tenemos a CONAGUA, los ayuntamientos, los organismos operadores o comités del agua, los comités de cuenca, ONGs, U.V., Universidad de Chapingo, Colegio de Posgraduados o INECOL.

RETOS

Uno de los principales factores que pueden FAVORECER la implementación de esta actividad es la intervención de la sociedad civil y los cambios en la ley de coordinación fiscal. Igualmente existe una opinión pública que presiona cada vez más acerca del tema de la contaminación de ríos. Igualmente existen datos de estudios de monitoreo del agua de la U.V. específicos para la zona de Córdoba que pueden servir de insumo. Cuando se platicó de sistemas de tratamiento se reconoció la existencia de plantas de tratamiento con tecnologías alternativas que ya se encuentran instaladas y han tenido excelentes resultados así como bajos costos de operación.
Los principales factores que IMPIDEN la implementación de esta actividad tienen que ver con la falta de voluntad política, el desconocimiento de muchos municipios acerca de cómo gestionar este tipo de recursos y los elevados costos de operación de una planta de tratamiento compleja. Es también un factor que impide la implementación la falta de una cultura integral del agua, una cultura que visualice la posibilidad por ejemplo de reutilizar de forma ampliada las aguas servidas, de disminuir lo residuos en origen, etc.

Con el fin de superar esos factores que impiden la implementación se identificaron algunos elementos que contribuirían a superar estos obstáculos:
- Una alta participación social
- El cobro de un impuesto especial a contaminadores, con especial atención a los beneficios de café, los trapiches, los ingenios azucareros y los grandes centros de población /fraccionamientos.
- Posibilidad de separar las aguas pluviales en origen.
- Existencia de ejemplo regional y locales con tecnologías alternativas para el tratamiento de aguas residuales.
c) **APOYO A LA CONSERVACIÓN DEL CAFETAL DE SOMBRA**

¿QUÉ y DÓNDE?

Apoyo a la conservación del cafetal de sombra con enfoque agroecológico. Promover actividades para el mejoramiento del cafetal y su producción: café orgánico de sombra, secadores solares comunitarios, beneficios ecológicos, intercalar árboles de sombra que aporten nutrientes, entre otras.

Estas actividades se promoverían en la franja cafetalera de la cuenca, la cual coincide con la distribución del bosque mesófilo. Se buscaría acercamiento a productores y productoras con cafetales de sombra existentes (lograr conserven), así como aquel@’s interesados en aumentar la sombra.

¿CUánto y CON QUIÉNES?

El costo de promover la diversificación productiva del cafetal y asociarlo con macadamia, por ejemplo, tiene un costo de unos $20,000.00 / Ha. Hay algunas ecotecnias que pueden promoverse como el uso de secadores solares (MXN $6000) y los beneficios húmedos ecológicos (MXN 38,000).

Como posibles fuente de financiamiento se identificó a SAGARPA y a CONAFOR.

Asimismo se identificó a varios socios potenciales con quienes contar para promover esta actividad en el Jamapa. Tenemos a U.V., la Universidad de Chapingo (en especial el Centro Regional Universitario- CRUO de Huatusco), así como uniones de productores y empresas como Nestlé/AMSA.

RETOS

Uno de los principales factores que pueden FAVORECER la implementación de esta actividad es la existencia de organizaciones cafetaleras (como la Coordinadora de Organizaciones Cafetaleras de Huatusco). Asimismo existen estudios y proyectos ya desarrollados y otros en proceso en los centros de investigación de la región como el INECOL y el CRUO.

Los principales factores que IMPIDEN la implementación de esta actividad tienen que ver con los bajos precios del café, la especulación existente en el mercado, las afectaciones de la roya y la consiguiente promoción de variedades de sol o la falta de un manejo realmente integral de la cafeticultura. En el tema de mercado se identificó además que la cadena productiva se encuentra rota y hay una falta de vinculación entre productores y mercado.

Con el fin de superar esos factores que impiden la implementación se identificaron algunos elementos que contribuirían a superar estos obstáculos:

- Apoyarse en las redes nacionales e internacionales de comercio justo.
- Aprender de las alternativas de diversificación de la producción y las que le dan un valor agregado al café.
Alrededor de las reforestaciones y su mantenimiento todas las mesas de trabajo alrededor de un u otro ecosistema plantearon la importancia de llevarlas a cabo y darles seguimiento. En este sentido se plantearon 4 grandes tipos de actividades:

a) - Reforestación con especies apropiadas de bosque de niebla en espacios colectivos / espacios públicos. Retomar la experiencia llevada a cabo en la zona del Metlac (cuenca río Blanco) donde en zonas que hay bosque mesófilo u agricultura se han promovido reforestaciones colectivas con voluntari@s.

b) - En zonas con cafetales de sombra (por ejemplo, alrededor del municipio de Comapa) se planteó el enriquecimiento de cafetales con mayor diversidad arbórea y arbustiva así como dar mantenimiento de la reforestación ya existentes para alcanzar una alta supervivencia. Estas actividad incluirían chapear, fertilizar y podar.

c) - Reforestación de zonas riparias ya sea en la zona alta, media o baja de la cuenca. Esta rehabilitación de cauces se priorizaría en zonas ganaderas y agrícolas rivereñas.

d) - Revegetación y conservación de dunas y protección de playas en los municipios de Veracruz, Boca del Río, o Alvarado donde actualmente hay dunas y playas, existen algunos fraccionamientos o hay presencia de vegetación halófita o pionera.

* Existen varias estrategias para realizar las actividades antes descritas. En el caso de reforestaciones en espacios públicos ha funcionado la donación de planta y la participación de voluntari@s. En esos casos han participado financieramente la Cervecería Cuauhtemoc-Moctezuma o Conafor y han sido socios estratégicos Fundación ADO, Pronatura y la alianza con los transportistas de la región de Córdoba-Orizaba.

* Para el mantenimiento en zonas de cafetal se deben contemplar unos 10 jornales al año por hectárea para el chapeo. Si involucra cafetales una instancia financiadora puede ser SAGARPA. La asociación con Chapengo para proveer abono, con el COLPOS o Pronatura ha funcionado en el Jamapa. Resulta fundamental la coordinación con los cafetaleros de sombra.

* En el caso de riparios el costo es de unos 20,000 $ MXN (caso de franjas de 100 m. lineales x 10 m. de ancho). Este costo incluye el cercado de exclusión, la planta y los jornales. Existen instancias como CONAGUA a través del programa FONDEN, SAGARPA con el PROGAN. o CONAFORE con los Fondos especiales para manejo con enfoque de cuenca que pudieran financiar estas actividades. Pudiera incluso buscarse el financiamiento de los organismos operadores de Veracruz-Boca del Río-Medellín (antes SAS) pues la alta carga de sedimentos en la planta ptilinizadora supone un costo de remoción relativamente alto a lo largo del año. Para esta actividad los socios
estratégicos identificados fueron las asociaciones civiles, actores académicos, municipios y uniones ganaderas.

* El trabajo restauración en dunas costas tiene un costo de unos 410 pesos por m2 de duna. Posibles instituciones financiadoras son hoteles, restaurantes, la Secretaria de Comunicaciones y Transportes (SCT), la secretaria de turismo (SECTUR) o el Programa Nacional de Infraestructura.

RETOS

Muchos de los factores que pueden FAVORECER la implementación de las actividades de reforestación antes descritas son generales como la necesidad de vincular estas actividades de reforestación con alguna actividad productiva (sea cafetalera, ganadera o turística. Igualmente la mayoría de estas acciones son medidas de adaptación al cambio climático por lo que ello pudiera favorecer la implementación a través de algún financiamiento al respecto. Otros factores son algo particulares como la existencia de organizaciones de voluntarios, la convocatoria utilizando medios de comunicación y redes sociales en el caso de eventos de reforestación públicos. Para la reforestación riparia una factor posibilitador es la atribución de CONAGUA sobre el área federal

Los principales factores que IMPIDEN la implementación de estas actividad tienen que ver con desconocer la importancia de las mismas, con la poca planeación (desarrollo urbano / cafetalero / ganadero). En otros casos tiene que ver la falta de asesoría técnica especializada que acompañe todo el proceso y asesore por ejemplo en qué especies son las más adecuadas (en los diferentes tipos de ecosistema), qué tareas mantenimiento deben llevarse a cabo, como minimizar uso fertilizantes químicos, etc… Existió consenso acerca de que un factor que no contribuye es la falta de voluntad política y de una visión integral de la cuenca, se sigue trabajando de forma fragmentada. En el caso de la ganadería/agricultura no existen suficientes esquemas incentivadores que l@s interesen en reforestar y conservar a largo plazo las áreas riparias. Para el caso de las dunas costeras se debe concientizar a tod@s de la importancia de este ecosistema y que una playa es más que arena, son playas con dunas, con un ecosistema trascendental para el golfo de México.

Con el fin de superar esos factores que impiden la implementación de estas actividades se identificaron algunos elementos para superar estos obstáculos:

- Necesidad de desarrollar programas integrales de manejo de áreas riparias, asignando recursos para la restauración y para el mantenimiento y conservación a largo plazo.
- Apoyarse en los programas de educación ambiental y las organizaciones existentes en la región que trabajan al respecto.
- Existencia de programas de desarrollo municipal para las zonas metropolitanas de Córdoba y Veracruz sobre los que se puede uno apoyar e incidir.
- Se identificó que existe suficiente información técnica al respecto para lograr la restauración de estos ecosistemas. En muchas ocasiones el reto es su difusión.
REFERENCIAS

